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INTRODUCTION.

To the pure mathematician of the present day the tensor calculus is a notation of
differential geometry, of special utility in connection with multi-dimensional spaces ;
to the applied mathematician it is the backbone of the general theory of relativity.
But when it is recognised that every problem in applied mathematics may be regarded
as a geometrical problem (in the widest sense) and that the geometrical forms which
many of these problems take are such that the tensor calculus can be directly applied,
it is realised that the possibilities of this calculus in the field of applied mathematics
can hardly be overestimated. It has a dual importance: first, by its help, known
results may be exhibited in the most compact form; secondly, it “enables the
mathematician to exercise his most potent instrument of discovery, geometrical intuition.

In the present paper we are concerned with the development of general dynamical
theory with the aid of the tensor calculus. In view of the present close association
of the tensor theory with the theory of relativity, it should be clearly understood that
this paper only attempts to deal with the classical or Newtonian dynamics of a system
of particles or of rigid bodies. The subject is presented in a semi-geometrical aspect,
and the reader should visualise the results in order to realise the close analogy between
general dynamical theory and the dynamics of a particle. Mathematicians display
a strange reluctance in summoning to their-assistance the power of visualisation in multi-
dimensional space. They forget that they have studied the geometry of three dimen-
sions largely through the medium of a schematic representation on a two-dimensional
sheet of paper. The same method is available in the case of any number of dimensions.

The reasoning of the present paper is essentially analytical, but the results are trans-
lated as far as possible into geometrical language ; it is to stress the geometrical character
of the theory that the title “ Geometry of Dynamics ’ is adopted in preference to that
more commonly used in kindred discussions, viz., “ The General Problem of Dyna,mics.”

In Chapter I. the various types of dynamical manifold are outlined. The further study
‘of these manifolds with the aid of the tensor calculus is suggested as a fruitful field of
research. They afford interesting extensions of familiar geometrical ideas. For example,
the manifold of configurations of a top with fixed vertex is a three-dimensional manifold
with a novel connectivity. Chapter II. is concerned with certain geometrical properties
of Riemannian space. Chapters III.and IV. contain discussions of the manifold of
configurations with the two important types of line-element. Attention is directed to

F 2
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the generalisation of BonNNET’s Theorem (§ 3.3), the Principle of Least Curvature
(§§ 3.6, 4.5) and the determinate form of LacranGE’S equations applicable to non-
holonomic systems (§3.8). In Chapter V. there are given necessary and sufficient
conditions that all the co-ordinates but one should be ignorable.

The rest of the paper deals with the question of the stability of states of motion. The
discussion is based on the Lagrangian equations, which are well adapted for the
tensorial method. In Chapter VI. there is given a geometrical definition of stability
which yields three types of dynamical stability. The current definition of steady
niotion, so well suited to the Hamiltonian method, is replaced by definitions modelled
to meet the requirements of the subsequent discussion of vibrations about a
state of motion. The definitions adopted are, however, connected with the current
definition. Chapters VIIL., VIIIL. and IX. contain analytical treatments of the problem
of the stability of a state of motion (not necessarily steady). The curvature tensor
makes its appearance in these chapters. On account of the rather heavy analysis
connected with the case of N degrees of freedom, the important cases of two and three
degrees of freedom receive preliminary treatment. The method employed is in a
sense a generalisation of the method of moving axes. The generalised Frenet-Serret
formulee, due to BrascmkE, play a fundamental part, the displacement from the
undisturbed to the disturbed trajectory being resolved into components along the
tangent and the normals to the trajectory. In Chapter IX. the theory is purely
geometrical, the time being eliminated by the condition of fixed total energy. The
results are simpler than those obtained in the preceding chapters, the question of
stability being merely a problem in the geometry of geodesics in a Riemannian space.
However, there is the compensating disadvantage that only disturbances which do not
change the total energy are taken into consideration. Some simple applications of the
tests are given.

CHAPTER 1.
Types oF Dynamicarn MaNiroLp.
§ 1.1. The manifold of configurations.

Each point of the manifold of configurations represents a configuration of the system.
1f the dynamical system has IV generalised co-ordinates ¢" (r = 1, 2, ..., IN), this manifold
is N-dimensional with co-ordinates ¢". When a point of the manifold is given, the
positions of all the particles forming the system are also given. This is the dynamical
manifold most commonly considered.

There are two types of line-element of particular importance. We shall assume
throughout that the kinetic energy 7' is homogeneous and quadratic in the generalised
velocities and does not contain the time explicitly. Let us write

(1.11) ds® = 27dt* = a,,dq"dg".
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The force system is not involved in this definition of ds and for that reason we shall
call (1.11) the kinematical line-element in the manifold of configurations.t It is not
assumed that the system is holonomic. '

The second type of line-element is

(1.12) ds? =2 (h— V) Td2 = (h — V) a,,dq"dq,

where % is a constant and V is the potential energy. This type of line-element is
obviously only available for the discussion of conservative systems, and, indeed, is only
of importance for the discussion of motions having a total energy h. 1In that case the
natural motion takes place along a geodesic of the manifold, a familiar deduction from
the Principle of Least Action.f For that reason we shall call (1.12) the action line-
element in the manifold of configurations.

§ 1.2. The manifold of configurations and time.

Each point of the manifold of configurations and time represents a configuration and
an instant. The manifold is of (IV -- 1) dimensions, the co-ordinates of a point being
" (r=1,2,..., N)and ¢. When a point of the manifold is given, the positions of all
the particles forming the system and the time are also given. '

It is more difficult to pick out a line-element in this manifold, for although many
are available they do not appear to be of much interest. The following line-element
suggests itself as a possible basis for the geometry of the manifold of configurations
and time :— :

(1.21) _ ds? = 2Ldt* == a,,dq"dq* — 2Vdt.

This bears a certain resemblance to the line-clement in a stationary gravitational field
in the general theory of relativity.
But there is another form

m n

(1.22) ds — 21, dt :‘%"E‘L oV

1 Certain aspects of the geometrico-dynamical theory of the manifold of configurations with this line-
element have been discussed by M. Livy, Comptes rendus, 86 (1878), 875 ; G. Darsoux, Théorie des Sur-
faces, Pt. 2 (1915), 516 ; K. Kasner, Trans. Amer. Math. Soc., 10 (1909), 201 ; J. Lirka, Trans. Amer.
Math. Soc., 13 (1912), 77, Proc. Amer. Acad. of Awts and Sciences, 55 (1920), 285, Bull. Amer. Math. Soc.,
27 (1920), 11, Journal of Math. and Phys., Massachuseits Inst. of Technology, 1 (1921), 21 ; L. M. KsLrLs,
Amer. Journal of Math., 46 (1924), 258. None of these writers appear to have made use of the tensorial
notation. The only work with which I am acquainted in which this notation has been applied to classical
dynamics is the well-known memoir of Ricor and Levi-Civita, Math. Ann., 54 (1900), 178-190 (¢f. J. E.
Weicar, “ Invariants of Quadratic Differential Forms,” Cambridge Tracts, No. 9, 80). H. Herrz, Principles
of Mechamics (translated by Jonus and WaLLey, 1899), considered the manifold of 3N dimensions corre-
sponding to a system of N particles, using a line-element: essentially the same as the kinematical line-
element. The line-element being a sum of squares of differentials with constant coefficients, HERTz was able
to proceed without the tensorial notation.

1 Cf. ArprLL, Mécanique rationnelle, 2 (1911), 436.
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For this line-element the natural trajectories are geodesics by virtue of Hamilton’s
Principle. It is possible that the development of a geometrico-dynamical theory based
on this line-element would form an interesting subject for research. However, since ds
is not the square root of a homogeneous quadratic form, the geometry is not Rie mannian
and there is a certain difficulty in the definition of angle in such a manifold.

§ 1.3. The manifold of states.

Each point of the manifold of states represents a state of the system. If p, (r =1, 2,
..., N) are the generalised components of momentum (p, = 071'/9¢"), the co-ordinates
of a point of the manifold are ¢", p, (r =1, 2, .. N); the manifold is therefore of 2N
dimensions. When a point of the manifold is given, the positions and velocities of all
the particles forming the sytem are also given.} This and the following manifolds appear
to be non-metrical ; their most interesting properties are associated with the integral-
invariants.

§ 1.4. The manifold of states and time.

Each point of the manifold of states and time represents a state and an instant. The
manifold is therefore of (2N + 1) dimensions, the co-ordinates of a point being ¢, p-
(r=1, 2, ..., N) and ¢&. When a point of the manifold is given, the positions and
velocities of all the particles forming the system and the time are also given.§

§ 1.5. Note on the scope of the paper.

The present paper treats only of the manifold of configurations (1.1), results being
developed both for the kinematical line-element (1.11) and for the action line-element
(1.12). As the theories connected with these two line-elements run more or less in
parallel, the symbol (K) is placed after the number of every theorem in the enunciation
of which the kinematical line-element is implied, with a similar use of the symbol (A)
where the action line-element is understood. Where a theorem is stated in such a way
that neither of these line-elements is necessarily involved, as in the cases of theorems
of Riemannian geometry and of theorems of a purely dynamical significance, no such
symbol is employed.

To avoid overloading the symbols with indices, I have thought it proper frequently
to use the same symbol in two different but similar senses, the sense to be understood
being sufficiently evident from the section or chapter in which it occurs. In any given
section (other than those containing matter of a purely geometrical import) we have

1 The geometry of this more general type of metrical manifold has been developed to a certain extent ;
¢f. P. Finsier, “ Ueber Kurven und Flichen in allgemeinen Réumen,” Dissertation, Gittingen (1918) ;
J. L. SyncE, “ A Generalisation of the Riemannian Line-Element,” Trans. Amer. Math. Soc., 27 (1925), 61 ;
J. H. TavLor, ¢ A Generalisation of Levi-Civita’s Parallelism and the Frenet Formulas,” ¢bid., 246.

1 For the use of the manifold of states in connection with statistical mechanics, see J. H. Juans, The
Dynamical Theory of Gases (1925), 69.

§ This is the manifold considered by CarTAN, Legons sur les invariants intégraus (1922).
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under consideration a definite line-element, either kinematical or action, and such
quantities as Christoffel symbols, curvature tensors, etc., are to be calculated with
respect to the fundamental tensor belonging to the line-element under consideration.
In any case where it is necessary to introduce symbols which are to be calculated for
a line-element other than that to which the section is devoted, explicit statements make
matters clear. We shall adopt ¢,, as standard notation for the fundamental tensor
of the line-element under consideration, so that when we are thinking of the kinematical
line-element we have

(1 .51) Gmn = Cpns

and when we are thinking of the action line-element,

(1~52) Gon = (k - V) Qs
where uniformly we write

) o dqm _6_{_2?
(1.53) 2T = =3 = >

¢ being the co-ordinate system.

The force system is in all cases supposed to be independent of the time and of the
velocities, so that the generalised forces are functions of position in the manifold of
configurations.

It is important to distinguish between the words curve and trajectory. A curve is
a purely geometrical concept in the manifold and consists of a one-dimensional continuum
of points. A trajectory is a curve along which the co-ordinates are given as functions
of the time. A natural trajectory corresponds to a motion under a given force system
according to the laws of dynamics.

CHAPTER IL

NoTaTioN AND GEOMETRICAL PRELIMINARIES.
§ 2.1. Conventions for summation ; magnitude of a vector ; angle.

As stated inﬂi§ 1.5, this paper deals with two different line-elements in the manifold
of configurations. It seems therefore desirable to preface the geometrico-dynamical
developments of later chapters with some definitions and theorems couched in purely
geometrical language. Of much of the substance of this chapter it may be said that
it is already known in some form or other. It is necessary, however, for clarity and
uniformity in notation to give a list of formule for later use.

The manifold under consideration being of N dimensions, the common convention
of summation with respect to indices repeated in a product is adopted, except when
the indices are capital letters ; the range of summation is from 1 to N for small italic
indices and from 1 to (N — 1) for small Greek indices. Repeated capital indices imply
no summation, unless such is indicated by the sign . Small italic indices unrepeated
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imply a range of values from 1 to N, small Greek indices from 1 to (N — 1), while
unrepeated capital indices imply no range of values, except where such is specifically
indicated.

Indices which do not imply tensorial character are generally enclosed in round brackets,
except in the case of numerical indices denoting powers. To avoid confusion between
numerical tensorial indices and indices denoting powers, the former are printed in
italics, e.g., ¢° means the second component of a contravariant vector, ¢> means ¢
squared.”

If X" is any contravariant vector, its magnitude is X where
(2.11) X? = ¢, X" X", X>0.

A unit vector is one whose magnitude is unity.
The angle 0 between two contravariant vectors X" and Y is given by

gmnXm Y

212) T XX g YTV

§ 2.2. The contravariant space derivative and the contravariant time-fluz.

We shall denote derivatives with respect to the arc s of a curve by an accent (e.g.,
¢") and derivatives with respect to the time ¢ by a superposed point (e.g., ¢").
If X7 is a contravariant vector given along a curve, we shall write

and call X’ the contravariant space derivative of X" along the curve. Similarly, if X7
is given as a function of ¢ along a trajectory, we shall write

(2.22) XT :Xr »IL' {77;?@} qu",

and call X* the contravariant time-fluz of X along the trajectory. It is well known
that X7 and X" are contravariant vectors.}

§ 2.8. Relative curvature ; first curvature.

Lipkaf has given a very simple descriptive definition of the relative curvature of
two curves. Let C' and C* be two curves touching one another at a point O. Let P
‘and P* be points on C and C* respectively such that OP = OP* = s (say). Let
PP* = 5. 'Then the relative curvature of €' and C* is defined to be
(2.31) k (C, C*) = lim 20 /5°,

§—>0

1 Of. Biancat, Lezions di Geometria Differenziale, 2, (1924), 790.
1 Bull. Amer. Math. Soc., 29 (1923), 345.
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When the curve C* is a geodesic, this definition gives us the curvature (absolute
curvature) of C.1 If we write

2.32) _ ¢ =, K= =g { m;@} ",

the curvature « of any curve is the magnitude of the vector «", so that
(2.33) K = k™",

The relative curvature of two curves (' and C* is given analytically by
(2.34 (G CH = g (67— ) (),

the unasterisked quantities being calculated for C, the asterisked for C'*.
The vector «™ defines the first or principal normal of a curve, and thus if v* denotes
the unit vector in the direction of the principal normal,

(2.35) K= Kkv".

The curvature of a trajectory is defined to be the curvature of its curve.

§ 2.4. Co-planar vectors and components.

If X" and Y™ are two vectors at a point, we shall say that the vector Z is co-planar
with them if 4 and B exist so that

(2.41) 7' = AX" 4 BY".

Further, if X" and Y" are unit vectors, we shall call 4 and B the components of Z" in
the directions of X" and Y” respectively.

The same idea is available in the more general case. If X[, X, ..., X{;, are M
contravariant vectors at a point and if 4D, A®, ..., 4™ exist so that
(242 ¥r = AOXG, + APXpy + .. + AV X,

then we shall say that Y is coplanar with X7, Xp), ..., X, and, if these latter
are all unit vectors, then 4™, 4%, .. | 4™ are the components of Y” in the directions
Of X(l), X(z), ey X{ﬂ[)’

§ 2.5. A special co-ordinate system ; curvature of a surface geodesic.

We shall use the word surface to denote a manifold of (N — 1) dimensions immersed
in the fundamental manifold of N dimensions. The properties of a surface are often
expressible in simple form by the use of a special co-ordinate system. It is well known
that the congruence of geodesics normal to a surface is a normal congruence and that

1 Of. Biancai, loc. cit., 465. The curvature here considered is the first or principal curvature.
Curvatures of higher orders are discussed in § 2.7.

VOL. CCXXVI.—A., G
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any two of the normal surfaces give equal intercepts on all the geodesics. Now if
¢ ¢, ..., ¢! be a co-ordinate system selected arbitrarily on the given surface, and if
the normal geodesics be the parametric lines of ¢¥, ¢~ being the distance from the given
surface measured along these geodesics, we have a system of co-ordinatest for which

(2.51) ‘ ds? = g¢,, dq" dg" - (dg")*.

We shall call such a system of co-ordinates ““ geodesic orthogonal trajectory with respect
to ¢ 7 or briefly G.0.T. (¢") since the parametric lines of ¢" are geodesics and are the
orthogonal trajectories of the surfaces ¢" = constant.]

A family of parallel surfaces is defined by the property that any pair of the surfaces
gives equal intercepts on all the orthogonal trajectories. It is easily seen that the
orthogonal trajectories must be geodesics, and therefore, given a family of parallel
surfaces, it is always possible to choose a G.O.T. (¢¥) co-ordinate system such that the
equations of the surfaces of the family are ¢" = constant.

A G.O.T. (¢") co-ordinate system is characterised by the equations

(2.52) g = 0, gay= 1.

A simple expression for the curvature of a surface geodesic can be found when a
G.0.T. (¢") co-ordinate system is employed, the equation of the surface being ¢%¥ =
constant.§ The equations of a surface geodesic are

(2.53) I+ [“ :] ¢ =0,

and the components of curvature (relative to the fundamental manifold of N
dimensions) are ‘

m'’ mn m
(2.54) Ky == g _]—[ r ](1 q
or, since the curve is contained in the surface ¢¥ = constant,
(2.55) K, = gm(jl*"‘ *. [E‘;V/J q,u’glf.
Hence, using (2.53) and (2.52), we have
, A

(2'56) v oo O V,

< =[‘H e = =1
so that, since ¢¥¥ =1,
(2.57) K == — % _aé:g’j_v”gl"lq”"

+ Cf. Brancat, loc. cit., 423, 450 ; Brancar calls (2.51) “ forma geodetica del ds? 7.
1 Cf. Proc. National Academy of Sciences, 8 (1922), 200.
§ Cf. Biaxcar, loc. cit., 457 ; the present method is more direct.
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The minus sign in this expression is adopted in order that the formula
(2.571) K== s\

may be true, A" being the contravariant unit vector normal to the surface drawn in
the direction of ¢" increasing. ‘ '

The above result does not supply us directly with a method by which, given the
equation of a surface for an arbitrary co-ordinate system, we can determine the curvature
of a surface geodesic in any assigned direction. We do not propose to answer that
question in its general form, but will deal with a special case which is of importance
later. ' ‘

Let us suppose that for the general co-ordinate system ¢" with fundamental tensor
9an We are given a family of parallel surfaces whose equations are

(2.58) F (¢, ¢% ..., ¢") = constant.

Let us choose a G.O.T. (p") co-ordinate system p" for which the given parallel surfaces
are p” = constant, and let the fundamental tensor for this co-ordinate system be S
where, as in (2.52),

(2.581) foo =0, fyy =1

Let us distinguish Christoffel symbols for the p" co-ordinate system by the subscript
(p). Let the components of the unit vector normal to the system (2.58) be denoted
by 2" in the ¢" co-ordinate system and by u” in the p” co-ordinate system, so that

(2.582) wo=0, p"=1; p,=0 py=1L

Consider the expression

(2.583) E = —2q",

where ¢ is in any direction lying in the surface (2.58) through the point, and 2, is the
covariant derivative of 1. It is clearly invariant, and therefore we have

(2.584) E=—upp = — w.pp .
But o
= _aiff —_— {PG}
(2.585) “‘pa’ ap(, t . By
and thus, by (2.582),
of,

2.586 P PG} — 1%

( ) e {N ) 2 ]JN
But by (2.57) the curvature of a surface geodesic is given by
(2.587) K= —} %_% o,
and thus, by (2.584) and (2.586),

(2.588) E =«

Hence we have the result :
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TurorEM I:—The curvature of a surface geodesic of ome of a family of parallel
surfaces 1s '
— Ay qr' Qs',
where N 1s the unit vector having at every point a direction normal to the surface of the
Sfamaly through the point and q” is the unit vector tangent to the surface geodesic.
Now the unit vector having at every point a direction normal to the surface of the
family (2.58) through the point is

(2.59) W = F'[ (g F"E")'",
where

(2.591) Fr = g¢™F,, F,=0F[3q"
Thus we have

(2.592) A = F,[(g"F,.F,)'",

and by covariant differentiation
(2.593) ry = F (g F, F )" —F, . g"F,F. /(5" F,F.)",
and hence the following result :
TrrorEM II :—The curvature k of a surface geodesic of a member of a famaly of parallel

surfaces
F(q, ¢*, ..., ¢") = constant

s gien by

(2.594) «(g"F,F)"* = — (F,.g"F,F,—F,.¢"F,F) ¢,
where

(2.595) F,—3Floy,  F,— oF. / by — {ZS} k.,

and q" 18 the unit vector tangent to the surface geodesic.

§ 2.6. Condations that the orthogonal trajectories of a family of surfaces should be geodesics.
We shall now find necessary and sufficient conditions that the orthogonal trajectories
of a family of surfaces should be geodesics,T the equations of the family being

(2.61) F(¢', ¢, ..., ¢") = constant.

If we are given a congruence (normal or not) defined by the equations
dg' _d¢* _ - __dg”
(2.62) Sr=SF=.. ==y,

+ Ricor and Levi-Civita, loc. cit., 154, have given conditions that a congruence of an *“ ennuple ” should
be geodesic. However, it is hoped that the method of the present paper will be found more direct. Cf.
also J. E. WrieHT, ““ Invariants of Quadratic Differential Forms,” 71.
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A" being the unit vector having at every point the direction of the curve of the congruence
passing through the point, these equations may be written

(2.63) ¢ =W,

and hence, by differentiation with respect to the arc of the curve of the congruence,

(2.64) K== NG =,
or in covariant form,
(2.65) K, == A A,

where a,, is the covariant derivative of A, Thus, since the vanishing of all the
components of «, is the characteristic of a geodesic, we have the result :

TueoreM 111 :—In order that the curves of a congruence may be geodestics, it is necessary
and suffficient that
(2.66) A A =0,
where W is the unit vector everywhere co-directional with the congruence.

It is important to note that from the mere fact that 2" is a unit vector we have

b

= (g"M1,) = 0,
(2.661) 5 (9" 220)
and therefore
(2.662) A A= 0.

Now the orthogonal trajectories of the family of surfaces (2.61) are defined by the
equations

(2.67) %z%‘éz .:%‘{%,

where

(2.671) Fr=gmF,  I,=20F[oq"

Thus the unit vector A" having everywhere the direction of the trajectory is
(2.672) o= F/(gmF,F,)"

Thus, applying (2.593), we obtain |

(2.673) (g"F B> no = (B, .g"F,F, —F, .g"F, F,) F.

The curves in question therefore are geodesics if and only if
(2.674) F. b .g"F,F,— F,.g"F,FF, =0.

But this may be written

F,F" _g"F,F'F,
(2.675) . F - gmnFmF” ,,

r
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it being remembered that summation with respect to a repeated index applies only to
a product—not to a quotient. Thus the conditions

F, " _F,F"
(2.676) e

»

are necessary. It is not difficult to prove that they are also sufficient, for if they are
satisfied each of the equal fractions is equal to

gnanFmem
g F.F,

which is the right-hand side of (2.675). Hence we have the result :

(2.677)

TureorEM LIV :—In order that the orthogonal trajectories of a family of surfaces
F (4", ¢, ..., ¢") = constant
should be geodesics, 1t is necessary and suficient that

3
9 mn_l,, rmF [ gﬂlnF smF n

(2.68) - bl
where
(2.681) F.—oFjog, ., — oF jog — {“;j} 7.

§ 2.7. The system of normals and curvatures for a curve.

Brascukef has developed a system of normals and curvatures for a curve in Rie-
mannian space of N dimensions with a positive definite line-element. I have developed
similar results] in the case where the line-element is not necessarily positive definite.
The notation of this latter paper is more compact for the purposes of the present paper
than that of BrascHkE and I shall adopt it here with slight modifications, writing
Kay Ky «-+> Kav_1) Tor the first, second, ..., (N — 1)th curvatures, A(y, Al ..., Aly_1
for the unit vectors in the directions of the first, second, ..., (N — 1)th normals and
Mo for the tangent unit vector. Thus «q, is the « considered in § 2.3, Af; is v" and
the first normal is the principal normal. The various normals and curvatures are
connected by the generalised Frenet-Serret formule

oy = Kanyhuy
Ay = Kghe) — Kooy
Hon == Ky Ny = Koy A
(2.71) J A2 @A) @h
-2 = K _phw-1) — K- h(w-2)
Ay == — Ky Ma-2)-

T Math. Zestschrift, 6 (1920), 94. .
T Proc. International Mathematical Congress, Toronto (1924).
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These equations serve to define the curvatures and normals. As cases of particular
importance, we may note that in two dimensions (with the notation of § 2.3)

(2.711) o= kv’ Vo= K,

)

and in three dimensions (where to avoid the clumsy subscripts we put o for Al and
o for )

(2.712) A= Kkv", V" == cp" — K\, o= —ov.

If it should happen that the Mth curvature is zero, the Mth normal and all normals
of higher order become indeterminate. We can, however, still use (2.71) by putting
the Mth curvature and all curvatures of higher order equal to zero, Afa, Ay,
..y Ny-1) being mutually perpendicular unit vectors normal to the curve, perpendicular
to the (M — 1) existing normals and undergoing parallel propagation along the curve.

Thus we may always speak of “ the (N — 1) normals of a curve,” even if the curve
has vanishing curvatures, recognising, however, in this case that some of the normals
are to a certain extent arbitrarily selected. If only one of the curvatures («u—1))
vanishes, the (N — 1)th normal is then uniquely defined (except with respect to sense)
by the condition of being perpendicular to the (N — 2) existing normals and to the
tangent. Thus, in Kuclidean space of three dimensions, a curve of vanishing second
curvature (torsion) has a unique. second normal (bi-normal), which is propagated
parallelly along the curve.

CHAPTER III.

STuDY OF THE MANIFOLD OF CONFIGURATIONS WITH THE KINEMATICAL
LINE-ELEMENT.

ds? = 21'de = a,, dq" dq".
§ 3.1. Kinematics.

Before introducing the force system we shall proceed with some purely kinematical
considerations, bearing in mind as an obvious source of suggestion for nomenclature
the analogy between the motion of a point of the manifold and the motion of a particle
in the Kuclidean space of three dimensions.

We shall call the vector

(3.11) o=
the velocity vector, the magnitude of the velocity being
(3.111) 0 = (G q" ) = § = (2T)"".

Defining the acceleration vector f* as the contravariant time-flux of the velocity vector,
we have

(3.12) Jr=ir =i o = g 0 g
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the magnitude of the acceleration being

(3.121) f=(a,.fmf".
Transforming the parameter from ¢ to s, we find

(3-122) f" = 's"(lr' _.i“ $? ((IT" _}H {WZ’%} qm' qn')'
By (2.82) and (2.35) this may be written

(3.123) 7= 8\ - kst = VAT - k0P,

where A" is the unit vector tangent to the trajectory, « is the curvature and v" is the
unit vector in the direction of the principal normal. Thus we have the result :

TaeoreM V (K) :—In any trajectory the acceleration vector is co-planar with the tangent
and princepal normal of the trajectory.

Since A" and v" are unit vectors, their coefficients in (3.123) are the components of
the acceleration vector in the directions of the tangent and principal normal respectively.
But

(3.13) §2 = 2T,

and hence

(3.131) §=T(2I) =1
Thus (3.123) can also be written

(3.14) fr= 1" + 2¢Tv,

and we have the result :

TarorEM VI (K) :—In any trajectory the component of acceleration along the tangent
to the trajectory 1is
§ or v or 1,
and the component along the principal normal is
. .

k8* or kv or 2«T,

where v vs the velocity and « the curvature of the trajectory.
If f, denote the covariant components of the acceleration vector, we havet

— aqm mn "m'n_._d_ _a_T_ _Q_T_
To obtain an expression for the rate of change of kinetic energy, we differentiate

(3.16) v =21 =q
with respect to ¢ and obtain

,U"lv'n,

mn

(3.161) o ob =T =a, " = q, " = f.q"

mn

1 Cf. WHITTAKER, Analytical Dynamics (1917), 39.
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§ 3.2. Law of unconstrained motion.
The Lagrangian equations of motion are
d (0T > T
(3.21) a’z<aqr aqr - QM

where @), is the generalised force vector-—covariant since ),8¢" = 3W is invariant.
By (3.15) these equations can be written

(3.211) Jr= @
or, in contravariant form,
(3.212) =,

where @ = ™), is the contravariant force vector. Thus we have the generalisation
of the fundamental law of particle dynamics :

TaeoreEM VII (K) :— In a natural trajectory the acceleration vector s identical with
the contravariant force vector. "

Let us now suppose that a certain line of force is a geodesic and let us think of a motion
along this line of force defined by the equation

(3.22) §=Q.

We wish to know whether this is a natural motion or not. Since the trajectory is a
geodesic it has no curvature, and thus by (3.14) the acceleration vector is tangent to
the trajectory and therefore co-directional with the force vector. By (3.22) the accelera-
tion has the same magnitude as the force vector. Thus, by Theorem VII, the motion
considered is a natural motion.

Conversely, if there exists a natural motion along a line of force, the acceleration
vector must be tangent to the line of force. Thus the curvature of the line of force
must be zero and it must therefore be a geodesic. Hence we have the result :

TaroreEM VIIT (K) :—Natural motion can take place along a line of force if and only
of the line of force is a geodesic.
For any natural motion we note that by (3.161) and (3.211)

(3.23) T = Q.q",

which merely states that the rate of increase of kinetic energy is equal to the rate of
working of the forces acting on the system. To extract the full geometrical significance,
we note that

(3.231) Q.q" = vQ) cos ¢,

where ¢ is the angle between the velocity vector and the contravariant force vector.
Thus we may state the following theorem :
VOL. CCXXVL—A., H
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TrrorEM IX (K) i—In a natural motion the rate of increase of kinetic enerqy is equal
to the product of the magnitude of the velocity vector, the magnitude of the force vector and
the cosine of the angle between these vectors.

We shall speak of any motion for which (3.23) is true as

<

‘ satistying the law of

energy.”’
Equation (3.23) may also be written in the form
(3.24) T = Q.q4" = @ cos ¢.

Now if the force vector be resolved into components along N mutually perpendicular
directions, of which one is tangent to the trajectory, ¢ cos ¢ is equal to the component
in the direction of the tangent. Thus, by Theorem VI, we have the result :

TarorEM X (K) :—For any trajectory the tangential component of acceleration is equal
to the tangential component of force if and only if the law of energy is satisfied.

Equation (3.24) shows that, given a field of force and any curve in the manifold of
configurations, there is an oo famély of motions along the curve for which the law of
energy is satisfied, the velocity and kinetic energy for such motions being defined as
functions of the arc by the equations

(3.241) =T T, - j Q.dq",

where T, is the value of 7' at the point s = s,

§ 3.3. BoNNET’S theorem.

We now proceed to generalise the well-known theorem of Ossian BonNETT with
regard to orbits under superimposed fields of force.

Let @hy, @), -.., @y be M different force systems which can act either separately
or all together on a given holonomic dynamical system. Let us suppose that there
exists a curve C in the manifold of configurations which can be described under each
of the several force systems acting alone. Let 7y, T2, ..., Tar) be the kinetic energies
in these several motions, each of these quantities being of course a function of the arc s
of € measured from some fixed point. Then by (3.14) and (3.212)

{ o) = T'on" + 2cT 7,

(3.31) Wy = T " + 2T ",

LQQ(‘M) = TI(M))\T -+ QKT(M)VT-

Now let all the force systems act at once and let ¢ be the additional force system
necessary to make the system describe the curve C' with kinetic energy 7' given by

(3.32) T :T(1)+T(2)+ e +T(M)-

+ Journal de Math., 9 (1844), 113 ; ¢f. WHITTAKER, loc. cit., 94.
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We have then

(3.33) Q4+ Qi+ Qi+ oo Qiary =Ty + Ty . Ty N
+ 2 [Ty + T+ ... +Tanlv,

so that, by (3.31), all the components of )" are zero, and we have the following result :

TrrorEM XI (BoNNET’s Theorem) :—If a holonomic dynamical system can pass through
a certain sequence of configurations under the separate influences of a number of force
systems, then, of all the force systems act together, the system can pass through the same
sequence of configurations with a kinetic energy equal to the sum of the kinetic energies
which it had in the separate motions under the several force systems.

§ 3.4. Curvature of a trajectory.

The curvature of a trajectory, defined as the curvature of its curve, is a purely
geometrical or ““statical ’ conception. For our purposes, however, it is more useful
to employ the time ¢ as an independent variable. We proceed to find an expression for
the curvature of any trajectory, natural or unnatural.

Equation (3.123) may be written

(3.42) §%" = fr — §q",

and hence, multiplying by s2, we have

(3.421) AT = 2Tfr — T

Thus

(3.422) 1674 = a,,, 2T — Tq™) Tf* — T§")

= 4Tf* — 4T Ta,,f"q" + 2TT?,
and hence, using (3.161), we obtaint

(3.43) | K = I _T_Z —f__ﬁ

- 4T%  8T¢ vt
If ¢ denotes the angle between the acceleration and velocity vectors, then

ajmnfmqn B T

(3.44) cos ¢ :f(ZT)”2 _—f(QT)”Z’

or

(3.441) T2 = 2f°T cos® 4,

so that, substituting in (3.43) and taking the square root, we have
_ [siné

(3.45) o=

t An equivalent form was obtained by Lirka, Journal of Math. and Phys., Massachusetts Inst. of Tech-
nology, 1 (1921), 33, for the curvature of a natural trajectory.
H2
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This result is really intuitively obvious from Theorem VI, since f sin ¢ is the component
of the acceleration vector in the direction of the principal normal.

We verify at once the well-known fact that a natural trajectory under no forces is a
geodesic.t For, if there is no force, the acceleration is zero and therefore by (3.45) the
curvature is zero, which is a sufficient condition for a geodesic in the case of a positive
definite line-element.

§ 3.5. Curvature relative to a natural trajectory.

We now proceed to find an expression for the curvature of any trajectory C relative
to the tangential natural trajectory C*, having the same velocity vector at the point of
contact (P).

From (3.421) we have
(3.51) 4T (& — k) = 2T f* — T — 2T f* 4 T*g*,
where the unasterisked quantities refer to O, the asterisked to C*. On future occasions
we shall not trouble to explain this obvious notation. From the condition of identical
velocities we have at P

(3.511) ¢ =q*, T =T
Thus (3.51) may be written
(3.512) 4T? (k7 — k¥ = 2T (f7 — f*") — (T — T%) .

Substituting in (2.34) we obtain ‘
(3.52) 161"« (C, C¥)F = 4T%,, (f* — ) (f* —f*)

— AT (T — T*) ay (f" — 5 ¢ 4 (T — T*V 6,,9"¢".
Now making use of the kinematical equation (3.161) and the corresponding asterisked
equation, together with the dynamical equation of C*, namely

(3.53) Jr =,
we obtain
(3.54) 8T [« (C, C*)} = 2Ta,, (f" — Q") (/" — Q") — (I — ,,.Q" ")

By introducing the force system, we have succeeded in getting rid of all explicit reference
to the comparison trajectory C*. Since a,,, X" X" is a positive definite form for arbitrary
values of X, the first term on the right-hand side is positive unless " = . The last
bracket vanishes if the trajectory C satisfies the law of energy (3.23). Thus we have
the result :

Tueorem XII (K) —If i any trajectory satisfying the law of energy the curvature
at every nstant relative to the natural trajectory having the same configuration and velocity
vector 1s zero, then the trajectory is a natural trajectory.

If we are dealing with a conservative system, in which case
(3.55) Q, = —aV[oq,

T Of. Riccr and Levi-Civita, loc. cit., 179.
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we have
(3.551) — Q= V.
Thus, if H denotes the total energy, we have
(3.552) He TV =T — an@,
and (3.54) becomes
(3.56) 8T [1c (C, C*)F = 2Ta,, (f* — Q") (f* — Q") — I~

§ 3.6. The Principle of Least Curvature.
Suppose that a holonomic dynamical system, whose kinetic energy is given by
(3.61) 27 = 4y,

is subjected to the external force system . Let M stationary constraints, holonomic
or non-holonomic, be put on the system, expressed by the equations

(3.62) A(l)m dqm = A(Z)m dqm = ees T/ A(Bl)m dqm —_ 0;

the coefficients being functions of position only. The equations of motion for the
system so constrained are

(3.63) =@ 4P,
where P” is the additional force vector introduced by the constraint, such that
(3.631) / P, 3¢ =0

for all displacements 3¢" satisfying the equations of constraint (3.62).

We wish to consider three trajectories in the manifold of configurations, all having
the same velocity vector at a point R (and therefore touching one another at that
point) :

" (1) an arbitrary unnatural trajectory C, satisfying the conditions of constraint ;

(2) the constrained natural trajectory C*; '

(3) the free natural trajectory C**.

We have, by (3.54), at the point R

(364) 81" I:K (O’ O**)]J = QT&’"" (fm - Qm) (fn - Qn) - (T - aanmqn)z:
(3.041) STV [ (0%, CF)F = 2T, (5 — Q) ([ — @),

use being made of the facts that the law of energy (3.23) is satisfied for C* and that,
at R, T* is equal to 7. Now the equations of motion for C* are, as in (3.63)

(3.65) S =+ I
and therefore, using (3.631),
(3.651) Gonf ¥73G" == G (@™ + P™) 3¢" = @, Q" 84",
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3¢" being any displacement satisfying the equations of constraint. But

rA(l)QO — A(z)mqm = ,,, == A(M)M’” =0,

(3.66) L : .
A(l)mq "= A(2)mq*m = e 5T A(M)mq*m - 0’

along C' and C* respectively, and therefore by differentiation with respect to ¢

(3 661) { A(l)mfm + A(l)mnqmqn T= el T A(M) mf"m + A(M)mnqmqn — O’

A(l)mf*m “}“ A(l)”mq*mq*n = .., == A(M)mf*m _,_ A(M)mnq*mq*n — O,
with the usual notation for covariant derivatives. Hence, by subtraction, we have at R
(3.662) Ay (f" =) = Agyn (J"—[*") = - = danm (f"—rf*") =0.

Thus the displacement 3¢" = (f” — f*") 8r, where 3+ is an arbitrary infinitesimal,
satisfies the equations of constraint, and therefore, by (3.651),

(3.663) Gy [¥" (" = *) = 0" (" = [*).
Subtracting (3.641) from (8.64) we have

(3.67) 8T% {[x (C, O] — [« (C*, C**) ]2} = 2Ta,, | f"f* — f*" f*" —2 (f’" — Q]

— (L' — Q" 7")",
and substituting from (3.663) we find

(3.671) 81* {[K (0, 0**)]2 - [K (G*: C**)F} = 211(]/7,”,, (fm Hf*m) (fn ___f*n)
) . (T _ aanmqn)s.

Now the curve of the unnatural constrained trajectory C is perfectly arbitrary except
in so far as it satisfied the conditions of constraint and has an assigned direction at R ;
the motion along C is restricted solely by an assigned velocity at R. Without further
limiting the arbitrariness of the curve of C, let the motion along it be defined by (3.241),
T, being the assigned kinetic energy at R the law of energy (3.23) is then satisfied.
The last term on the right-hand side of (3.671) vanishes and the remaining term is
essentially positive. Thus

(3.672) k (C, OFF¥) > « (0%, CF*),

and we have the following theorem :

TaporeM XIII (K) (Least Curvature) :—When a holonomic dynamical system us
subjected to constraints, holonomic or non-holonomic, the natural constrained trajectory
has, relative to the unconstrasned natural trajectory with the same velocity vector, a smaller
curvature than any other curve having the same tangent and satisfying the conditions of
constraimt.
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§ 3.7. Law of motion in the case of one constraint, holonomic or non-holonomic.

The preceding theorem embodies a descriptive law of motion for a system subjected
to constraints. We shall now present the law of motion in a different and more explicit
form, treating first the case of a single constraint, holonomic or non-holonomic.

Let ¢ be the external force vector and -

(3.71) v Amqm =0

the equation of constraint, the coefficients being functions of position. This equation
implies that the velocity vector must always be perpendicular to the contravariant
vector 4", which we shall call the constraint vector and which is given at every point
of the manifold. The equations of motion are (3.71) and

(3.72) =@ 04,
where 0 is undetermined. Differentiating (3.71) with respect to ¢ we obtain
(3.73) A, "+ Aung"q" =0,

where 4,,, is the covariant derivative of 4,. Multiplying (3.72) by 4,, and summing
as indicated, we have ‘

(3.74) A fr = A,Q - 04,4,
or, if 4 is the magnitude of the vector 4",

(3.75) 04 = A, f — 4,¢".
Hence, by (3.73),

(3.76) 04? = — 4,,.4"¢ — 4,0".

Substituting for 0 in (3.72) we obtain the equations of motion in the form
(377) fr = Qr - (AQO + Amnqmqn) AT/AQ’

But 47/4 is a unit vector ; hence we have the following result :

TurorEM X1V (K) :—When o holonomic dynamical system is subjected to a constraint,
holonomac or non-holonomic, defined by the contravariant vector A, the system moves as if
under the influence of an additional contravariant force vector co-directional with the
constraint vector and of (directed) magnitude

(A" A7) A

§3.8. Law of motion in the case of several comstraints, holonomic or non-holonomic.
Let us now suppose that instead of one constraint we have the following :

(3.81) Apynq" = Apmq™ = ... = Aunnq™ = 0.

Greometrically these equations imply that the velocity vector must be perpendicular

T Cf. WHITTAKER, loc. cit., 215, where the covariant form is given.
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to each of the M directions 4f,), Af), : , Al ; thus the velocity vector at any point
is constrained to lie in an element of (N — M) dimensions. If these elements form
.n their totality M o' systems of surfaces, each of (IV — 1) dimensions, the equations
(3.81) are integrable and the system is holonomic. This we do not suppose necessarily
to be the case.

Let a system of M mutually perpendicular unit vectors B, By, ..., By, be selected
in the elementary manifold of M dimensions defined by the vectors Af,, Afs), ... Afu).
This is, of course a process that can be carried out in an infinity of ways, and the choice
of method may be dictated by convenience in a particular problem. We may,
however, generally proceed as follows. Put

(3.811) Bjy) = A/ A,
so that By, is a unit vector. Put
(3.82) Blyy = E,1) By 4 B, » Al

where the ratio £ 4, : £ o) 1s defined by

(3.821) Een T B, @ BG) Ay = 0,

and the magnitudes of £, ;, and £, 5 by

(3.822) a,, B By = 1.

Then B, is a unit vector perpendicular to Bf;, and co-planar with A, and Af. Put
(3.83) By = £, 1) Biyy + £, 2 Bly + &6, Al

where the ratios £ 4, & 3,5 : &35 are defined by the equations

( ) ( E(S, 1) _"L Z’(i?, 3) amn E]{) ?3) = O’
3.831 ,
T oy @By Al = 0,

and the magnitudes of these quantities by
(3.832) a,, B2 By = 1.

mn

Then Bj;, is a unit vector perpendicular to B, and Bj, and co-planar with A4,
Aj,) and Ay  Proceeding in this manner we ultimately obtain M mutually per-
pendicular unit vectors By, By, ..., By co-planar with Af), Af), ... Af), so that

l( By == 14,1 A,

(3.84) J By = 1,1 Ay -+ 1.0 Al
|

I

L BIM) = Nm, 1)Af1)+7)(M, 2)Af2) Jr oo “["f)(M, M) A{M)-

Now the velocity vector, being by (3.81) perpendicular to each of the A directions,
must be perpendicular to every direction co-planar with these directions and therefore
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perpendicular to each of the B directions. Thus we may substitute for (3.81) the new
equations of constraint

(3.85) Buyng" = Boyuq" = ... = Bannq" = 0.
The equations of motion are (3.85) together with
(3.86) Jr=@ + 0By + 0% By + ... - 090 By,

where 0@, 6@, ..., 6“0 are undetermined. Differentiation of (3.85) with respect to
¢ gives

(3'87) B(l)mfm + B(l)mn qmqn T oeee = B(M)mfm + B(M)mn qmqn = 0.
Multiplying (3.86) by B,, and summing as indicated, we obtain
(3.871) By, f* = By, @ - 69,

using the fact that the B vectors are of unit magnitude and mutually perpendicular.
Hence by (3.87)

(3.872) . 00 = — By, @" — By q"q"

Similar expressions may be obtained for 6‘2’, oo, 099 When we substitute in (3.86)
we obtain the equations of motion

(3‘88) = Qr - (B(l)QO + B(l)mn qmqn) {1)
(B(2)mQ + B(2)mnq q )B(z)b

(B(M)mQ ‘f‘ B(M)mnq 9' )EM)-
Thus we have the result :

TrEorEM XV (K) :—When a holonomic system is subjected to M constraints, holonomic
or non-holonomic, these constraints can be defined by M mutually perpendicular unit vectors
Bly, By, ..., Ban.  The system moves -as if under the influence of an additional contra-
variant force vector co-planar with the B vectors and having in the directions of these vectors
components

—' (B(l)QO _I"‘ B(])mn qmqn)r - (B(2)m Qm “!— B(Z)mnqmqn)y seey T (B(M)QO "}" B(M)mn flmqn);
where By Baymns -+ » Banymn are the covariant derivatives of Buym», Bgayms -+ Buanym
respectively.

Equations (3.88) may also be written in the equivalent covariant form

a A
(3.881) =\ = 8—;; = @, — (Buyn¥" + Boymq"q7") Bay

(B(z)mQ -+ B(z)mnq _q ") B(Z)r

(B(M)mQ + B(M)mnq q )B(M)'r

We have here an extended and completely determinate form of LAGRANGE’S equations
applicable to non-holonomic systems.
VOL. CCXXVL—A. I
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CHAPTER 1IV.
STuDY oF THE MANIFOLD OF CONFIGURATIONS WITH THE ACTION LINE-ELEMENT.
ds? =2 (h— V)T de? = (h — V) a,, dg" dg" = ¢,., dg" dg".
§ 4.1. Preliminary.

In the previous chapter we had under consideration the kinematical line-element
and all Christoffel symbols, curvatures, etc., were calculated for that line-element.
Now we introduce the action line-element and, since it is necessary to use the previous
theory to establish our results, we must be careful to avoid all confusion. We shall
adhere to the general rule laid down in § 1.5 that expressions are ordinarily to be
calculated for the line-element under consideration which for the present chapter is
that of action. Wherever expressions calculated for the kinematical line-element have
to be introduced, they will be marked with a subscript (K), e.g.,

mn —_— aamr ! aa’nr S %n
(4.11) 2[ ’ ](K)—— 3 -+ P il

The general theory connected with the action line-element is of somewhat restricted
interest for three reasons :
(1) The force system must be conservative.
(2) We cannot compare the results of different force systems without changing the
line-element.

(3) It is awkward to compare two motions with different total energies.

The compensation for these restrictions lies in a certain greater simplicity in our results.

We shall only take into consideration motions with a total energy equal to the constant
h occurring in the expression for the line-element. Thus to a curve there corresponds
only one trajectory, time being defined in terms of arc-length (to within an additive
constant) by the equation

(4.12) §?=2(h— V)
Our discussions are not intended to take into consideration the singularities of this
relation which arise when V = h, that is, when the kinetic energy vanishes.

Our theory is, in a sense, a statical theory and the expression of the laws should not
involve the time.

§ 4.2. Curvature vector of any curve ; law of unconstrained motion.

For the covariant components of the curvature vector of any curve we have

(4.21) K = G - Vﬂ 77",
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the accent now, of course, indicating differentiation with respect to the action line-
element. But by simple calculation we find

@21) S Rl ] s IO A AT AN

7 r

where V, = 0V /og", and therefore (4.21) may be written

(4.22) k, = (h—V) (“rmq’"" + [W;'n](p) qm'qn'> — @ Vo™ q" + 3V 00" 7"

If we now introduce ¢ as the independent parameter and remember that

(4.221) (b —V)aumg™q" =1,
we obtain _

b=V, A=V 0 auVul"q" .V,
(4'23) Ky == ) .fr 35 $Aymq 52 + ?k —7

/. being the covariant acceleration vector as considered in Chapter III, and thus, since
by (4.12)

(4.24) §§=—20h—NV=—20h—T)V.q",
we have

b=V 2 =TVP oy 0 w0 Vaug"" 1V,
(4.25) K = fok = Vag"tmg pea Bl A

Using (4.12) we see that the second and third terms on the right-hand side cancel and
we have for the curvature vector «, of any trajectory

(4.26) 2(h—V)k, =f + V..
Thus, if the motion is natural and unconstrained, so that
(4.27) fi=—7V,

the components of the curvature vector vanish and the curve is a geodesic—a result
which is well known.

§ 4.3. Law of motion in the case of one constraint, holonomic or non-holonomic.

When holonomic constraints are put on a system, the law of motion is simply that
a natural curve is a geodesic in a submanifold defined by the constraints. If, however,
the constraints are non-holonomic, no submanifold is defined and we have to look further
for a geometrical statement for the law of motion.

Let us consider the case of one constraint given by the equation

(4.31) A4.9" = 0.
12
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The equations of motion are, in the covariant form of (3.72),

(4.32) f=—V,+ 04,.
Thus from (4.26) we have

(4.321) 2(h—V)k, =04,
or in contravariant form - |

(4.33) 2 (h— V) k" = 04"

We note that the principal normal of a natural constrained curve is co-directional with
the constraint vector 4"
Let us differentiate (4.31) with respect to s, obtaining

(4.34) ‘ A+ Apug™q" = 0.

If we multiply (4.33) by 4, and sum as indicated, we obtain

(4.341) 2(h —V)Ax = 042

where 4 is the magnitude of the constraint vector. Thus, by (4.34),
(4.342) 04° = —2(h — V) 4,97 7",

and if we substitute for 6 in (4.33), we have the equations of the natural constrained
curve in the form

(4.35) K' = — Amnqmrqn, . AT/A2°
Hence
(4.351) i = (Aug™q" |4),

and we have the result :

TarorEM XVI (A) :—When a holonomic conservative system s subjected to a single
constraint, holonomic or nmon-holonomic, the principal normal of the natural curve is
co-directional with the constravnt vector A” and the curvature 1s

+A4,.4"q" |4,

where A, 1s the covariant derivative of A,,.

§ 4.4. Law of motion in the case of several constraints, holonomic or non-holonomic.

The suggestion of the method fmmediately preceding, coupled with that of § 3.8,
is so easy to follow that we shall not delay over the question of the law of motion in
the case of several constraints. We shall merely state the result :

TreEOREM XVII (A) :—When a holonomic conservative system s subjected to M con-
strawnts, holonomic or non-holonomic, the complete constraint can be defined by M mutually
perpendicular unit vectors By, By, ..., Bay. The natural curve vs such that its
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principal normal is co-planar with these unit vectors and the contravariant curvature vector
k" has components in thewr directions equal to
—Bwwmg"0"s —Bemd" ("5 s —Bonmg"q"

The curvature of the natural curve is the square root of

(Baymng" ") + (Bemng”q")* + -+ 4+ (Banug™ q")*-

§ 4.5. The Principle of Least Curvature.

A principle of least curvature in the case of the action line-element follows easily
from the similar principle for the kinematical line-element as established in § 3.6.
Remembering that plain symbols refer to the action line-element and those marked (K)
to the kinematical line-element, we have

(4.51) ds = Vh —V (ds)u,

and therefore, when we examine the definition of relative curvature as given in § 2.3,
we see at once that
(4.52) K (C, 0%) = —L

Vh—7V

where C and C* are any two curves touching one another.

Now let us suppose that a holonomic conservative system is subjected to certain
constraints, holonomic or non-holonomic. Let us think of three curves in the manifold
of configurations, touching one another at a point P :

[« (C, %))y,

(1) any unnatural curve O, satisfying the conditions of constraint ;
(2) the natural constrained curve C* ;
(8) the natural unconstrained curve C**,

Remembering that we are considering only motions with a total energy A, so that the
velocities of the natural motions on C* and C** are equal at P, we can apply Theorem
XI1II (§ 3.6) to obtain the inequality for curvatures with respect to the kinematical line-
element

(4.53) [ (C%, C**) ]y < [ (C, C¥*)] -
Hence by (4.52)
(4.531) Kk (C*, C¥*%) < k (C, C**),

But C** is a geodesic with respect to the action line-element and curvature relative to it
is curvature in the absolute sense. Thus we have the result :

TreorEM XVIII (A) (Least Curvature) :—When a holonomic conservative system is
subjected to constraints, holonomic or non-holonomic, the natural constrained curve has @
smaller curvature than any other curve having the same tangent and satisfying the
conditions of constraint.
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CHAPTER V.
IeNORABILITY OF ('0-ORDINATES WITH THE KINEMATICAL LINE-ELEMENT.
§ 5.1. Statement of the problem. |

A conservative dynamical system is said to have an sgnorable co-ordinate when that
co-ordinate does not occur explicitly in the kinetic potential L. The importance of
ignorable co-ordinates lies in the fact that the number of degrees of freedom of a dynamical
system can be reduced by a number equal to the number of ignorable co-ordinates.}

If
(5.11) L=T—7V =lami"q" —V,

the necessary and sufficient conditions that the co-ordinates ¢, ¢, ..., ¢ should be
ignorable are

Opn Oy Oy
(5.12) T T
and
oV oV oV
(5.13) T T

The existence of ignorable co-ordinates is clearly dependent on the particular system
of co-ordinates ¢ used to specify the configurations of the system. For example, in the
case of a particle in a plane, attracted to a fixed centre by a force depending on the
distance only, the argument 6 is an ignorable co-ordinate when the configurations are
specified by polar co-ordinates (r, 6), but when cartesian co-ordinates are employed
there is no ignorable co-ordinate. Thus if we take a dynamical system with ignorable
co-ordinates and transform to a new system of co-ordinates, it will in general happen
that none of the new co-ordinates are ignorable.

An important problem presents itself : being given a dynamical system, to determine
whether it is possible to find a co-ordinate system for which some of the co-ordinates are
ignorable. An answer to this problem in terms of rigid-body displacements in the
manifold of configurations has been given by Levy} and the existence of a linear integral
has been discussed by Ricci and Luvi-Civira,§ but these treatments do not seem to
afford tests by means of which we can determine by mere calculation whether a system
admits ignorable co-ordinates or not.

In the present paper we shall not attempt a solution of the general problem of deter-
mining the niaximum number of ignorable co-ordinates which a system may admit.
We shall confine our attention to the determination of necessary and sufficient conditions
that a system with N degrees of freedom should admit (¥ — 1) ignorable co-ordinates.
The special case of two degrees of freedom is of such relative simplicity that we shall
discuss it separately.

t Cf. WHITTAKER, loc. cit., 54.

1 Comptes rendus, 86 (1878), 463 and 875.
§ Loc. cit., 179.
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§ 5.2. The case of two degrees of freedom.
Let ¢’ be ignorable, so that

(5.21) %‘qﬂ;‘ =0
and
(5.22) %;—f —0.

This latter equation tells us that the parametric lines of ¢ are equipotential curves.
Let € and C* be neighbouring equipotential curves and let P and P* be points on
them corresponding to equal values of ¢*. Let 3¢° denote the increment in ¢° in passing
from P to P*. Then

(5.23) (PP*)* = ay, (3¢°)?,

which is independent of ¢* by virtue of (5.21). Thus PP* is of constant length. Also,
if 0 denotes the angle between PP* and C

T'3¢° a
5.231 s0=%ud o7 — _Ju |
( ) o pPp* '\/“11%2
and this also is independent of ¢*. 'Thus, if P*N is the pérpendieular let fall from P*
on O, P*N is of constant length, being equal to PP* sin 6. Thus the equipotential ourves
are parallel. ’ '
The components of the curvature vector of C' are

(5.232) Ky =0, + Bl] (7"
where
(5.233) an (g")? =1, ¢ =0.
Thus, using (5.21), we have
: IrKI =0,

(5.234) PR

a1 O¢°
Hence the curvature of C is given by

) 22 aa
5.24 — YO oy
( 2 ) *+ K 2 ay aqz ’

which is independent of ¢*, and thus the equipotential curves are each of constant curvature.
We shall now show that if the equipotentials are parallel curves, each of constant

curvature, a co-ordinate system exists such that one of the co-ordinates is ignorable.
Let us take a ¢.0.T. (¢°) co-ordinate system ¢" (see § 2.5), the family of parallel equi-

potential curves having the equations ¢ = constent. Further, let the value of ¢* on
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the equipotential curve ¢° = 0 be equal to the arc measured from some fixed point. Then
we have everywhere

(525) az =0, (e = 1,

and when ¢’ is zero

(5.251) (0511)92,_:0 == 1,

In order to establish the ignorability of ¢’ it is sufficient to prove
o

5.26 B =

(5.26) o

Now the curvature of an equipotential curve ¢* = constant is, as a very particular case
of (2.57),

Oty 1ny: 1 0a
5.2 1%y g1 00
(5.27) K 2 o (q") P o
But we are given that « is independent of ¢*; therefore
5.271 o 1
(5.271) W(-og 611) = 0.
But, since da,,/dq" vanishes for ¢° = 0, we have

0

(5272 [ Ztog )], —o.
and therefore, by (5.271),

0
(5.273) é? (]Og a,u) _= O

in general. Thus (5.26) is proved.

Remembering that the lines of force are the orthogonal trajectories of the equipotentials
and that they are geodesics if and only if the equipotentials are parallel, we have the
following result :

TaroREM XIX (K) :—In order that it may be possible to find for & conservative dynamical
system with two degrees of freedom a system of co-ordinates for which one co-ordinate is 1gnor-
able, it is necessary and sufficient that the equipotentials should be parallel curves each of
constant curvature, or, equwalently, that the lines of force should be geodesics and the equa-
poltential curves each of constant curvature. The parametric lines of the ignorable co-ordinate
are the equipotential curves.

We deduce an interesting result in the case where the kinetic energy is homaloidal,
1.e., reducible to a sum of squares of velocities, as in the case of a particle in the Euclidean
plane. In this case it is possible to find an ignorable co-ordinate if and only if the equi-
potential curves form a system of concentric circles.

We shall now proceed to establish analytical conditions by means of which it may be
ascertained by mere calculation whether or not a system with two degrees of freedom
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admits an ignorable co-ordinate. In what follows ¢ is a perfectly general co-ordinate
system.

From Theorem IV (§ 2.6) we know that in order that the orthogonal trajectories of
the equipotential curves may be geodesics it is necessary and sufficient that the single
condition

(5.28) amn Vlm Vn o amn VZm Vn

v, 7,

should be satisfied. We have also from Theorem III the equivalent conditions

(5.281) AN =0,

where A" is the unit vector everywhere perpendicular to the equipotentials.

Assuming that the above conditions are satisfied, so that the equipotential curves are
parallel, let us seek an analytical expression for the condition that the curvature of each
equipotential curve should be constant. For this purpose we shall use the formula of
Theorem I. (§ 2.5), which gives the curvature of any equipotential in the form
(5.282) K = — G ¢
Differentiating this equation with respect to the arc of the equipotential, we obtain
(5.283) K = — Mo ¢ — hK'Q — NG

Substituting for «" from (2.571) and using (5.281) and the identical relation (2.662),
we see that the last twWo terms vanish and we have

(5.284) K = — NQ g
But along the equipotential
(5.285) Ang" =0,

and therefore, since there are only two dimensions,
(5.286) ql' — 67\2, q2’ _ 87\1,
where 6 is undetermined. On substitution of these values in (5.284) we get a value for

' expressed as a function of position and we have the result :

TaroreEM XX (K) :—In order that it may be possible to find for a conservative dynamical
system with two degrees of freedom a system of co-ordinates for which one co-ordinate is
tgnorable, it is necessary and sufficient that

a™ VI m Vn - o™ V2m Vn

(5.287) 7 7
and thot
(5.288) M1r (V)2 — (Mazz + Paer + hear) (V)2 V4

= (Razr + haze + Riza) Vo (V1) — Rgae (V)P = 0,

where », = V, /(@™ V, V2, V, =0V [oq and 1, . are covariant derivatives.
VOL. CCXXVI—A., K
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§ 5.3. Necessary geometrical conditions for the admissibility of (N — 1) ignorable
co-ordinates.

Passing on now to the general case of N degrees of freedom, we shall find necessary
conditions in order that it may be possible to choose co-ordinates such that all but one
are ignorable.

Suppose that a co-ordinate system ¢, ¢°, ..., ¢" exists such that all the co-ordinates
are ignorable except ¢¥. Then

a nmn &
(5.31) “;?QT == (),
and
. oV
(5.32) é}}T = (),

where the convention with respect to Greek indices (see § 2.1) is to be remembered.

Referred to this co-ordinate system, the equipotential surfaces have the equations
¢~ = constant. Let P (¢', ¢°, .... q%) be a point situated on the equipotential surface
S and let P* (¢, ¢%, ..., ¢~ - 8¢") be the point where a neighbouring equipotential
surface S* is met by the parametric line of ¢ passing through P. Then

(5.33) (PP*) = ayy (8¢")°,

which is independent of ¢’, ¢°, ..., ¢" . Thus two adjacent equipotential surfaces make

equal intercepts on all parametric lines of ¢¥. Now the unit vector normal to S has
covariant components (0, 0, ..., 1// «™) and hence the angle 6 between PP* and the
normal to S is given by
]

5.34 cos 0 = o
( ) ,\/ Gy aNI\!
which is independent of ¢, ¢, ..., ¢°~*. Thus the normal distance between 5 and S*,
being equal to PP* cos 6, is also independent of these co-ordinates and S and S* are
parallel surfaces ; therefore the lines of force are geodesics.

Tet us now find the curvature of a surface geodesic of an equipotential S. The
equations of the geodesic are

(5.39) wt | e o

But by (5.31) the Christoflel symbols occurring in this equation all vanish and (5.35) is
equivalent to
(5.351) ¢ = 0.

For the calculation of the curvature with respect to the manifold of configurations we have

mn

(5.352) Ky = Gyt - L ) ] " ¢" = ‘f;}’ ] ¢
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Thus, by (5.31),

= 0,
(5.353) P ‘I 1006

= ¢q = Lgeq”,

N 8q

and we have
(5.354) 1\/«” ﬁf”q 9.

Now let us pass from a geodesic C of the eq{ulpoten.tial surface S through the point P
to another geodesic D of the same surface S, passing through a neighbouring point ¢
in a direction derived from the direction of €' at P by parallel propagation with respect
to the metric of S (not of the manifold of configurations). We shall call such a geodesic
D netsghbouring and parallel to C.  We may write (¢, ..., ¢"7, ¢*) for the co-ordinates of
P, (q¢" 4 3¢", ..., ¢" "+ 8¢¥1, ¢V) for the co-ordinates of @, (¢", ..., g"~*, 0) for the unit
contravariant vector at P having the direction of C' and (¢" + 3¢*, ..., ¢~ - 3¢, 0)
for the unit contravariant vector at ¢ having the direction of D, where

(5.355) a,3¢" +[ ¢3¢ = 0.
By (5.81) these reduce to )
(5.356) 3¢ = 0.

If 3k denotes the difference between the curvature of D at @ and the curvature of C
at P, we have from (5.354)

(5357) K == — Zaq [’,\/ NN Ty N q q :l bqp_ \/GNN g)w qlﬂgq s

so that, by (5.31) and (5.356),
(5.358) Sk = 0.

Thus the curvature of C at P is equal to the curvature of D ot @. Since the tangential
direction is propagated parallelly along the geodesic, it follows as a particular case that
the curvature of every geodesic of an equipotential surface is constant along its length.

There is a third type of necessary condition, non-existent in the case of two degrees of
freedom. Theline-element of any equipotential surface S is

(5.36) ds’ = a,,dg"dg’,

where @,, are constants over S.  Thus S ¢s ¢ homaloidal manifold, i.e., ds?* is trans-
formable into a sum of squares of differentials of co-ordinates.
We may state the result :

TrrorEM XXI (K).—If for a conservative dynamical system a system of co-ordinates
exists such that all the co-ordinates but one are ignorable, then
(a) the eqmpotentwl surfaces are parallel and the lines of force are geodesics ;
K 2
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(B) the curvatures, relative to the manifold of configurations, of any pair of neighbouring
and parallel geodesics of an equipotential surface are equal and the curvature of any
geodesic of an equapotential surface is constant along its length ;

(v) every equipotential surface is a homaloidal manifold.

Applying these tests to simple types of equipotential surfaces in the case of the motion
of a particle in three-dimensional Euclidean space, we may note that a family of con-
centric spheres satisfies («) and () but not (y), a family of coaxal equiangular right
circular cones satisfies () and (y) but not (B), while a family of coaxal circular cylinders
satisfies («), (p) and (y).

§ 5.4. Sufficient geomeirical conditions for the admissibility of (N—1) ignorable co-ordinates.

We shall now proceed to prove the following theorem :—

TuvoreMm XXII (K)—If for a conservative dynamical system the following conditions

are satisfied :— ‘

(a) the lines of force are geodesics ;

(B) the curvatures, relative to the mantfold of configurations, of every pair of neighbouring
and parallel geodesics of an equipotential surface are equal, and this 1s true for every
equipotential surface ;

() there exists a homaloidal equipotential surface ;

then a system of co-ordinates exists such that all the co- ~ordinates but one are sgnorable.

Let us take a G.O.T. (¢") co-ordinate system such that the homaloidal equipotential
surface S, has the equation ¢¥ = 0. Then, by («), the equations of all the equipotential
surfaces are ¢~ = constant. The choice of ¢', ¢, ..., ¢" " is still arbitrary on one of the
equipotential surfaces ; let us choose these co-ordinates such that on S, the fundamental
tensor has constant components. Thus

oa,,’ o
(5.41) ( ‘é’gb‘f)qwzn _
Now since
(5.411) ay, =0, ayy =1,
it is only necessary to prove that
0,
(5.412) T =0

everywhere, in order to establish the ignorability of all the co-ordinates but g%, the
conditions

(5.413) ¥ _

r
being already satisfied by the choice of co-ordinates.
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The curvature of any geodesic of an equipotential surface is, by (2.57),

oa,
(5.42) A U
and, if 3« denotes the increment in « in passing to a neighbouring and parallel geodesic,
we have
1 da,

(5.421) k= — 3 aq,aqzvq 73— 50 37,
where
(5.422) S¢ | { ” }qar Sq" — 0.
Thus

_ o%a,, _»8aujvr}> s
(5.423) | Sk = — < Bq’aq @NPIP q-q"3q".

But, by the hypothesis (8), 3« is zero for arbitrary values of the infinitesimal displacement
3¢* and of the direction ¢* ; therefore Av

' oa,, vrl
(5.424) ogogY 8qN{ o) " { P }

or, more explicitly,

a aa 1 /aavo- aa’m’ . ?_(:Z_L a’® Qﬁ_ﬁ
(5.425) og" aq S ( d  og" o ) ag"
+e ( o o aq”>a oq™

Now, thinking of the determination of the quantities ¢a,,/dq” as functions of g%, we
have here a system of linear differential equations of the first order ; thus, by virtue
of (5.41), it follows that (5.412) is true and the theorem is proved.

§ 5.5. Necessary and sufficient analytical conditions for the admissibility of (N —1) ignorable
co-ordinates.

We have in Theorems XXI and XXII geometrical statements of necessary and
sufficient conditions for the existence of a set of co-ordinates of which all but one are
ignorable. We shall now supply the equivalent analytical conditions.

We have already in Theorem IV (§ 2.6) expressed necessary and sufficient analytical
conditions that the lines of force should be geodesics. We shall therefore pass on to the
determination of necessary and sufficient analytical conditions for the equality of
curvatures of neighbouring and parallel geodesics of an equipotential surface, assuming
that the equipotential surfaces are parallel. In what follows ¢" is a perfectly general
co-ordinate system.

+ The Christoffel symbols occurring in this equation are to be calculated for the fundamental tensor of
the surface S. However, the co-ordinate system being G.0.T. (¢), it is easily seen that they have the same
values whether calculated for the fundamental tensor of S or for the fundamental tensor of the manifold
of configurations.
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By Theorem I (§ 2.5) the curvature of any geodesm of one of the equipotential surfaces
V(¢ ¢, ..., ¢%) = constant is

(5.51) _ k= — A0 ¢,

where A, =V [(@™V,V): If p"is a G.0.T. (p") co-ordinate system for which the
equipotential surfaces have the equations p™ = constant, we have

(5.511) | K= P = = e PP

where p., are the components of %, when referred to the p" co-ordinate system, so that

-

(5.512) w,=0, py =1

Then, passing to a neighbouring and parallel geodesic of the same equ1potentlal surface,
we find

(5:513) = <ap - {GT}M oy — {‘of }(P)u«wl’) P 8y,

where the Christoffel symbols for the p" co-ordinate system are marked with a
subscript (p). But we easily find that

(5.514) oy = Wy, = 0,
and therefore

a[‘l‘ o {GT} JLPT} > N T
5.515 Sk = — (Lles . — o | 07D S,
(5.515) K <ap, L [ o T L f P ) 27T P

= — o, PP S,

where p,,, is the covariant derivative of u,, for the co-ordinate system p'. But p,, is
symmetric in ¢ and o (¢f. 2.586), and hence it is easily seen that the necessary and
sufficient conditions for the vanishing of 3« are

(5.516) aer = O.
But
(5.517) = h,, L O OO

78l a p a p 8 p
and therefore, since d¢"/op® is a general vector in the equipotential surface, we may
state our result in the following form :

TarorEM XXIII (K)—Being gwen a family of parallel surfaces whose equations are

V(' ¢, ..., ¢%) = constant, in order that the curvatures of every pair of neighbouring
and parallel goedesics of each of these surfaces may be equal, it is necessary and sufficient that
(552 7\,“5’"7)’& == 0:

(where A, = V J@™V, V) and N, is the second covariant dertvative of 1,) for all values
of the vectors £7, =", € consistent with

(5.521) Vegr =V ="V, =0.
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We pass on now to necessary and sufficient conditions that a surface of a family of
parallel surfaces V (¢', ¢°, ..., %) = constant should be homaloidal.

In order that a manifold of N dimensions should be homaloidal, it is necessary and
sufficient that the curvature tensor should vanish—the curvature tensor being defined
(as usual) as

EE R L R S

for a co-ordinate system 2" and a fundamental tensor g,,,.

Let us take a G.O.T. (p") co-ordinate system p” for which the equations of the family
of surfaces are p" = constant, and let b,,, be the corresponding fundamental tensor. It
is easily establishedf by direct calculation that

ob,. 0b,, b, ab,,,‘)

(5531) (GAWT)S(P) = (Gmur-r)(l’) - i<§-p_N 8pN o W apN

where the subscript S (p) identifies the curvature tensor of the equipotential surface S,
calculated for the co-ordinate system p?, and the subscript (p) identifies the curvature
tensor of the manifold of configurations, calculated for the co-ordinate system p7. Thus
the necessary and sufficient conditions that S should be homaloidal are

db,, ob ob,, b,
! 1k Zve  pe Y
(5.532) (G/.wv'r)(li) I(apN apN apN apN) 0

But, if we compare with (2.586), this may be written

(5.533) : (Gp,yo"r)(p) - (y‘;up'vo’ - y‘uo‘(‘l‘w) =0
or

) agm aqn aqs ’O\qt
5.534 G st — (Mg?ns — Mpshpr) ] 7 == 4 - =
( ) [ mnst ( mi ns ms nt)] ap,,, apu apo- apr O

Thus we have the result : .

TuroreM XXIV (K).—In order that a surface of a family of parallel surfaces whose

equations are V(q', ¢, ..., ¢%) = constant should be homaloidal, it is necessary and
suffictent that

(554) [Gﬂmst - (7\mt7\ns - )‘17157\nt)] Eémnncsmt =0,
at all pounts of the surfuce and for all values of the vectors 7, 4", 17, o consistent with
(5541) Vmgm = V1)Ln”l = Vmcm == Vm('om = U,

where G, 18 the curvature tensor of the mamnifold contarning the famaly and
A=V @V, V)5 V, =0V [og;
A, 18 the covariant derivative of A,. '

T Brancai, loc. cit., 452.
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Let us now group our established geometrical results into a single dynamical theorem :

TurorEM XXV (K)—In order that it may be possible in the case of a conservative
dynamical system to find a system of co-ordinates for which all co-ordinates but one are
tgnorable, it 1s necessary and sufficient that the following conditions should be satisfied :—

(va"V amnV. 'V”

rm’ no sm
() = ;

v, v,

at all points of the manifold of configurations ;
(B) ‘ : }\nt&rnsct =0,
at all points of the mantfold of configurations and for all values of &7, ", € such that

V‘mam = me]m - Vmcm - O,
(Y) [Gmnst - (7\mt7\ns o 7\7ns7\nt)] E)'ﬂl.l)nCswt - 0)

at all points of at least one equipotential surface and for all values of £, 4", €, " such that

Vmam — V“mm —— V Cm — V wm — 0'

mn m

In these expressions A, =V [(@"V, V)2 V, =23V/[og, and ¥, I, are covariant
derivatives. ‘

CHAPTER VI. |
DEFINITIONS OF STABILITY AND OF STEADY MOTION.
§ 6.1. Geometrical stability.

A definition of stability should be invariant in character—that is, independent of any
particular system of co-ordinates. Further, to accord with the spirit of this paper,
it should be geometrical. Such a definition I proceed to give, applying it afterwards
in three special forms of peculiar dynamical significance.

Let there be a manifold of N dimensions with a co-ordinate system ¢", and let the
metric be

(6.11) ds* = g, dq" dq".
Let C and C* be two curves whose equations are

©) g =9¢"(u)
{(C’*) g = ¢ (u),

where u is a parameter. Let a correspondence be established in some definite manner
between the points of these two curves. TLet O and O* be a pair of corresponding points
and let T" be the geodesic joining them. Now let us take the vector d¢* (u)/du at O*

(6.12)
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and propagate it parallelly along I'. Let the result of this parallel propagation be a
vector ¢ at O. Let £” denote the value of d¢” (u) /du at O. Then the quantity A defined
as the positive square root of

(6.13) A= g,, (E" — ¢") (" — {7

1s an invariant with respect to transformations of co-ordinates.

Now let us suppose that in the manifold we are given some definite system of curves
defined parametrically in terms of an independent variable u ; let C be a curve of the
system. We shall speak of C as the undisturbed curve. Let a definite correspondence
be set up between the points of the other curves of the system (which we shall call the
disturbed curves) and the points of C. Let 8 be any positive number and let us pick out
all those disturbed curves C* which possess a point O* corresponding to a point O of C,
such that

(6.14) 00* <38, A<S.

We shall refer to every curve satisfying this condition as a disturbed curve of order 3.
We can now proceed to our formal definition of geometrical stability :

DEFINTITION OF GEOMETRICAL STABILITY.—If, being gien any positive number e, however
small, a positive number  exists such that PP*<e for every pair of corresponding points
P and P*, P being situated on the undisturbed curve C and P* on any disturbed curve of
order 3, then the curve C s said to be stable.

The above definition is more ambitious in point of rigour than the analytical investi-
gations which come later. It is necessary in what succeeds to work entirely in first
order effects, and it may happen that a system believed to be stable from the results of our
first-order approximation is unstable in the rigorous sense. However, even if we do not
make use of this definition in all its exactitude, it is desirable to be able to give a precise
invariant geometrical definition.

Summed up roughly, our definition may be stated : A curve is stable when the distance
between corresponding points of the curve and of an adjacent curve remains permanently
small.

It will be noticed that the question of stability involves three things :—

(1) a line-element ;

(2) a system of curves, each defined parametrically ;

(8) a correspondence between points of the undisturbed curve and of the disturbed

curves. ‘
It is by various choices of these three things that the following types of dynamical
stability are obtained.

§ 6.2. Stability in the kinematical sense.

The first type of dynamical stability we shall call stability in the kinematical sense.
Here distance is measured by the kinematical line-element and the system of curves is
VOL. CCXXVI.—aA. L
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composed of all natural trajectories under the given force system, without restriction.
We shall define corresponding points as those for which ¢ has the same value, so that
simultaneous configurations correspond. Thus there is stability in the kinematical
sense when the distance between simultaneous points remains permanently small.

§ 6.3. Stability wn the kinematico-statical sense.

The second type of dynamical stability we shall call stability in the kinematico-staticalt
sense. IHere again distance is measured by the kinematical line-element and the
system of curves is composed of all natural trajectories under the given force system,
without restriction. The correspondence between points on C and C* is established
by the condition that P should be the foot of the (geodesic) perpendicular let fall
from P* on C. Thus there is stability in the kinematico-statical sense when every
point of the disturbed curve is adjacent to the undisturbed curve.

It is obvious that stability in the kinematical sense implies stability in the kinematico-
statical sense, but the converse is not true.

§ 6.4. Stability in the action sense.

The third type of stability we shall call stability in the action sense. IHere distance
is measured by the action line-element and the system of curves consists of all natural
trajectories of total energy A—that is, it consists of all the geodesics of the manifold.
The correspondence between points on the curves is fixed by the condition that the arc
O* P* should be equal to the arc OP, where O and O* are arbitrarily selected origins on the
undisturbed curve and any disturbed curve respectively. Thus the problem of stability
in the action sense is that of the convergence of geodesics in Riemannian space. If two
geodesics pass through adjacent points in nearly parallel directions, the distance between
points on the geodesics equidistant from the respective initial points is either permanently
small or not. If permanently small, there is stability. As simple examples we may quote
the great circles on a sphere as illustrating stability and the straight lines on a plane as
illustrating instability.

There is anlimportant fact (easily deducible from the calculus of variations) in the case
where the order of the disturbed curve is infinitesimal. It is that if O*0 is perpendicular
to O, then so also is P*P, where P and P* are any pair of corresponding points. In con-
sidering stability in the action sense it is in general sufficient to consider only cases
where 0*0 is perpendicular to C'; thus we may say that there is stability in the action
sense when every point of the disturbed geodesic is adjacent to the undisturbed geodesic.

Perpendicularity with respect to the action line-element is equivalent to perpendicu-
larity with respect to the kinematical line-element. Thus it appears that stability in
the action sense is equivalent to stability in the kinematico-statical sense for disturbances
which do mnot change the total energy, except in those cases where (A—V) either
becomes zero at some point of the undisturbed curve or tends to infinity.

T So called because we use the kinematical line-element, while the curves to be compared are considered
statically as entities and not with reference to the particular motions along them.
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§ 6.5. Examples of the three types of stabz’lity.v

It should be remembered that, in the case of the motion of a particle of unit mass on
a surface, the kinematical line-element is precisely the geometrical line-element of the
surface as ordinarily understood, and perpendicularity of two surface directions in the
sense of the kinematical or of the action line-element is equivalent to perpendicularity
in the ordinary geometrical sense.

Consider the case of a particle describing an elliptical orbit under the influence of
a central force varying directly as the distance. Here we clearly have stability in all
three senses.

Consider the case of a particle describing an elliptical orbit under the influence of a
central force varying as the inverse square of the distance. Here we have stability in
the kinematico-statical sense and in the action sense, but not in the kinematical sense,
since the periodic time of the disturbed orbit is in general different from that of the
undisturbed orbit.

Consider the motion of a particle of unit mass on a plane under the influence of a force
system derivable from a potential

(6.51) V=—a-+ i

Writing down the equations of motions and solving, we get

{m:%tz—i—At—]—B,

(6.52) y = Csin (¢t 4 D),

where 4, B, C' and D are constants of integration. Let the undisturbed motion be

= 142 A
(6.53) {m o
y=0.

The motion is clearly unstable in the kinematical sense. In considering stability in the
kinematico-statical sense, the distance between corresponding points is

(6.54) PP¥ =y = Csin (¢t + D).

Thus there is stability in the kinematico-statical sense. To discuss stability in the
action sense, let us take the initial point O at the origin of co-ordinates and the initial
point O* on the y-axis. Then, the disturbance being infinitesimal, the (action) distance
between corresponding points is '

(6.55) PP* = (h— V)iy =24 (t 1) Csin (¢ + D).

Thus there is instability in the action sense. This example illustrates how such
instability occurs when the kinetic energy tends to infinity in the undisturbed motion.
Consider the motion of a particle in a parallel uniform field of force. Here we have
instability in all three senses.
L2
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§ 6.6. Steady motions in the kinematical sense.

A somewhat incomplete definition of steady motion has been given by Routa.f
Another definition has been given by WHITTAKER,] which may be stated as follows :

A motion is steady when all the components of the velocity vector are constant
throughout the motion, those corresponding to non-ignorable co-ordinates being zero.

We shall refer to such a motion as steady in the ignorable sense. While such a definition
is undoubtedly very convenient for the discussion of stability by means of the Hamiltonian
equations, it appears to be open to criticism on two grounds. First, it pre-supposes that
we are already in possession of one of those co-ordinate systems for which there are
ignorable co-ordinates, and, secondly, it defines steadiness of motion in terms of the
properties of the whole manifold of configurations.

The definition which follows provides tests by which it may be determined directly
by calculation whether or not a given motion is steady, the motion being defined by
equations

(6.61) ¢ =)

for a perfectly general co-ordinate system and without any reference to ignorable
co-ordinates. The definition will probably appear artificial and the reason for its
adoption will only become clear when we come to discuss the question of stability
analytically in the succeeding chapters. It will then be seen that the definition appears
to satisfy the fundamental idea of Rours. '

Let the metric be the kinematical line-element and let the notation for the normals
to the trajectory be as in § 2.7. Let us write

(6.62) .K(P, Q) = Gmnst)\lgg))\?b)lfQ)kzo), (P, Q = 0, ]., vee g N - 1),

where @, is the curvature tensor of the manifold of configurations. We note at

once from the well-known properties of the curvature tensor that K s ¢ is symmetric
in P and @ and that

(6.621) K(p,o) = K(O,P) — 0, (I) = 0, 1, vee g N - ].).

We may observe that K p is the Riemannian curvature of the manifold of
configurations corresponding to the two-space element defined by the tangent to
the trajectory and its Pth normal. Let us write

(663) W(P,Q) = anx?;’)x?Q): (P: Q = 0} 1, see sy N - 1)9

where @, is the covariant derivative of the covariant force vector. We note that
W 5. g 18 not in general symmetric in P and @ ; it is, however, symmetric when a potential
exists, for then we have

(6.64:) W(P’ Q — — Vm,,?\’&)k?@ - - V,,ml?}))k?m - VV(Q, P) (P, Q - 0, 1, ceey N - ].).
1 A Treatise on the Stability of Motion (1817), 2.
T Loc. cit., 193.
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We may also observe that, when a potential exists, W ) is equal to the value of
— d?V/ds? calculated along a geodesic drawn from the point in the direction of the
Pth normal. The quantities K  and W, ¢ are, of course, invariant with respect
to transformations of co-ordinates. ’

We shall now proceed to our definition :

DeriNiTioN (K).—A4 natural motion is swid to be steady in the kinematical sense when
all along the trajectory—

(1) the velocity v vs constant ;

(2) all the curvatures kg, Ky -« 5 Kay_p) are constant ;

(3) all the quantities Kp g (P, @ =1, 2, ..., N — 1) are constant ;

(4) all the quantities Wp, o) (P, @ =1, 2, ..., N — 1) are constant.

This is the definition of steady motion for discussions involving the kinematical
line-element, that is to say, for the treatment of the question of stability in the kinematical
and kinematico-statical senses.

If none of the curvatures g, kg, ..., kx_; vanish, all the quantities occurring in
the above definition are uniquely defined. If, however, several of the curvatures vanish,
some of the normals are no longer uniquely determined, and we must show that our defini-
tion provides a test of steadiness independent of any arbitrariness in the choice of normals.
Let us suppose that the Mth curvature vanishes, all normals of lower order being uniquely
defined by (2.71). Lebt A, Aarsnys o5 Ay-yy and A%L, AdTiq, oo, A8y, be two sets
of unit vectors chosen to represent the Mth, (M + 1)th, ..., (N — 1)th normals. If we
write

(6.65) M= (P=12,.., M 1),

6.651 Kb = G BN, |

( ) ®0 MEy Moy A Mo } (P,Q=1,2,..N—1),
(6.652) W(ﬁ’, Q) — an)\(*lg;z)\(,z? )

we shall prove that

(6.66) Kp, o) = constant, P,Q=1,2, .., N—1),
imply

(6.661) K ¢ = constant, (P,@=12, .. N—1),
and that

(6.67) W p, ) = constant, (P,Q=1,2,...,N—1),
imply

(6.671) W&, o) = constant, P,Q=1,2, ..., N—1),

where “ constant ” means “‘ constant along the trajectory.”
The condition of perpendicularity with respect to all the normals of order less than
M and to the tangent restricts the normals of order equal to or greater than M to an
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element of (N — M) dimensions at every point of the trajectory. Thus we may

write

(668) 7\3—}; = B(P,J‘l)x(M) _I— B(P, IVI+1)7\?IU+1) _}— s + .8(1), N-l)}\{N—l))
(P=M,M+1,..,N—1).

Taking the contravariant space derivative and remembering that all the vectors occurring
in (6.68) are propagated parallelly along the trajectory, we have

(6.681) B, anMon - B, e Marsny 1 o0 A B, yonyhiw—1y = 0,
P=M,M+1,..,N-—1).

If we multiply by «, A, where @) is one of the numbers M, M 41, ..., N —1, and
sum as indicated, we obtain

(6682) B/(P,Q):()? (P,Q:M,M—I-l, ...,N—"l),

by virtue of the condition of mutual perpendicularity of the normals. Thus all the g
co-efficients occurring in (6.68) are constants along the trajectory.
Now if we put
(1for P=¢Q

(6.683) B(P’Q):iOfOI'P?‘—Q r(PQ=12, ..., M—1),

and

(6.684) Be,o = B =0,

(P=1,2, ...,M—1; Q=M M-+1,..,N—1),
we may write .

N-1
(6.685) )\;l;f) == Rzl B(P, R))\zR)? (P == 1, 2, see gy N - 1).
Thus we have
N—-1 N-1
(6.686) Ko = Z I Guubemhimholas oo
N—-1 N-1
=22 bemBeskaes  (P@=12 .., N—1).

R=1

Therefore, since the p’s are all constant, (6.66) implies (6.661). Similarly (6.67) implies
(6.671). Our definition of steady motion is therefore free from all ambiguity in the
case of vanishing curvatures. '

We shall now show that any motion which is steady in the ignorable sense is also
steady in the sense of our definition, provided that none of the (N — 2) curvatures
Kays K@ys -+ » K- Vanish. '

Let us first consider the case where none of the (N — 1) curvatures vanish. Since
only the ignorable co-ordinates change and all their rates of change are constant, it
follows that any expression involving only the components of the fundamental tensor
a,,, and their partial derivatives with respect to the co-ordinates, the components of
velocity and the potential, remains constant throughout the motion. Thus 7T'is constant


http://rsta.royalsocietypublishing.org/

a
A Y
A \

/%

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I~
b \

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

J. L. SYNGE ON THE GEOMETRY OF DYNAMICS. 77

and therefore v is constant; hence ds/dt is constant. Now, when we examine the
equations (2.71), we see that AL, Ay, ..., Ay_1y, Kuy Kgp -+, Ka-1 are defined
as functions of the components of the fundamental tensor @,, and their partial
derivatives with respect to the co-ordinates and of 27, and their derivatives with
respect to s. But

Y/
6.69 My = g~ = " =,
(6.69) © =1 T
which are constant along the trajectory. Hence, since @,,, and their partial derivatives
are also constant along the trajectory, we see that A%y, Ay, ..., Ay—1), Kay K@y v Ky—1),

are all constant along the trajectory. Hence we see at once that K ¢, are constant.
Also V,, are evidently constant, since they are independent of the ignorable
co-ordinates, and thus Wp g are constant. Thus we find that steadiness in the
ignorable sense implies steadiness in the sense of our definition, provided that none of
the curvatures kg, k@), ..., Kx-1) Vanish.

Let us now consider the case where just one of the curvatures (xy_.;) vanishes
throughout the motion. As pointed out in § 2.7, the (N — 1)th normal is then uniquely
defined (except with respect to sense) by the equations

(6.691) amn)\?{tN_]_)l?P) :‘0, (P == O, 1, ....‘, N - 2),
and
(6.692) amnx%_l))\?N_l) = 1.

But when the motion is steady in the ignorable sense, @,, and i{p (P =0,1, ...,
N — 2) are constant along the trajectory, and therefore A{y_s) are also constant along
the trajectory, from which it follows at once that the motion is steady in the kinematical
sense.

In the case where several curvatures vanish, it does not appear to be true in general
that steadiness in the ignorable sense implies steadiness in the sense of our definition.

§ 6.7. Steady curves in the action sense.

In dealing with the action line-element, we should remember that the theory developed
is precisely the geometrical theory of a Riemannian manifold. A steady motion will
correspond to a geodesic of the manifold having special properties and, to stress the
geometrical character, we shall speak of a steady curve instead of a steady motion.

Let A7 denote the unit vector tangent to a geodesic C and let A%y, Ay, ..., Ay_,, denote
any (N — 1) mutually perpendicular unit vectors perpendicular to C' and propagated
parallelly along C. It is to be remembered that if we take any set of unit vectors at a
point of a geodesic and propagate them parallelly along the geodesic, the angles between
the vectors and the angles between the vectors and the tangent to the geodesic all remain
constant. Now let '

(6.71) K(p,Q) == Gmnst}\{’;'))\?o))\gQ))\(tO)’ (P, Q: 0, 1, cvey N - 1).
T Cf. Biancar, loc. cit., 794.
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Clearly Kp ¢ is symmetric in P and @ and Kp p is equal to the Riemannian
curvature of the manifold of configurations corresponding to the two-space element
defined by the tangent and the direction Afp,.

We shall now define a steady curve :

DErINITION (A).—A steady curve in the action sense is a geodesic along which all the

quantities
Kpg (P,Q=12..,N—1),
are constant. \

This is the definition of a steady motion to be adopted in discussing the question of
stability in the action sense.

We shall not delay to prove that our definition has a unique significance independent
of the choice of the particular set of mutually perpendicular normals Ajp) (P =1,2, ...,
N —1). The mode of proof is as in § 6.6.

It does not appear to be generally true that a motion which is steady in the ignorable
sense (cf. § 6.6.) is necessarily steady in the sense of the above definition.

CHAPTER VII.
STABILITY IN THE KINEMATICAL SENSE.
§ 7.1. Equations for the components of the disturbance vector.

It is in the analytical investigations in connection with stability of motion that the
use of the tensorial notation becomes of greatest importance. The appearance of the
Riemannian curvature tensor in the course of the analysis makes it difficult to believe
that similar results could be obtained without the use of this method.

The equations of an undisturbed natural trajectory C are

(7.11) q + {W;n} g = Q-

Let ¢" be the co-ordinates of a point P of C and (¢" + 7") the co-ordinates of the corre-
sponding (simultaneous) point P* of the disturbed natural trajectory C*, =" being
infinitesimal. We shall call the vector %" the disturbance vector. The condition for
stability in the kinematical sense is that = (the magnitude of the vector n") should remain
permanently small.

Let us substitute (¢" -+ ") in (7.11), since C* is a natural trajectory, and obtain

(7.12) i " @ i — @) =0

where the asterisk indicates quantities to be calculated at P*. Expanding these quantities
and retaining only first powers of small quantities, we have, after making use of (7.11),

o mmn W pn a mn s'm'n___aQr P —
(7.121) n+2{¢}nq+a—q—:{¢}wq n" =0

og*
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But by the definition of the contravariant time-flux (2.22) we have

(7.13) o= +{ }nmq,,

and hence

2, d /., mn ., st mn
() =2 (i + " q>+{;}< i " i)
B R
.Substituting for ¢ from (7.11) we find (after making the necessary changes of indices)
0 [ms st [mn nt m
caw) o i =i G = O e
—_ {m;?’} ,y]an.

Substitution in (7.121) gives

(7.14) T+ G’ g — Qin® =0,
where

(r.141) G a%s{m;z} a(; {m s} + {mtn} {si} N {mts} {T})

the mixed curvature tensor of the manifold of configurations for the kinematical line-
element, and

(7.142) Q: = %;2 + {Sf } Q"

the covariant derivative of the force vector ¢". It will generally be more convenient
to apply (7.14) in the covariant form
(7.15) a?’s%s + G"Iﬂ."nq’n'qsqn - Q"é’ns = O'

Equation (7.14) or (7.15) may be called the tensorial equation for the disturbance vector
wn the kinematical sense.

§ 7.2. Equation for the magnitude of the disturbance vector.

Let us introduce the unit disturbance vector " co-directional with »’, so that
(7.21) . 0" =N, '
and
(7.211) ' @, 0" = 1.

Then
(7.22) A= qur 0@,
and

(7.221) W= 295"+ i
VOL., CCXXVI—A, M
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Therefore

(7.222) a0 = 7 - 290,500 -+ na,,5pt
But from (7.211) we obtain

(7.23) W0 == 0,

and hence

(7.231) i b =0,
Thus (7.222) may be written

(7.24) @, 0t = — 0,0

Now if we multiply (7.15) by u” and sum as indicated, we have, by (7.24),

(7‘25)3 :l') - naftgrat + G?"n"n“rqn’nsqn - QTS!J'TY)‘ == O’
which may be written
(7.26) i A0 (G0 — 57— Q") =0,

where (. is the magnitude of the vector 4". KEquation (7.26) may be called the invariant
equation for the magnitude of the disturbance in the kinematical sense.

The invariant G,,,u"¢"e*q" is equal to the Riemannian curvature of the manifold
of configurations corresponding to the directions " and ¢", multiplied by a positive
factor ; hence we may state the following result :

TuroreM XXVI (K).—If the Riemannian curvature of the mantfold of configurations
corresponding to every two-space element containing the direction of the given trajectory
s negative or zero, and if Q,,a"2" is positive or zero for arbitrary values of @' at all points
of the trajectory, then the motion is unstable in the kinematical sense. '

§ 7.3. The wntegral of enerqy.

In the case where the force system is conservative we have also the integral of energy,
which may be written

(7.31) T +V* =T 4V - 3h,

where 3/ is the excess of the total energy in the disturbed motion over the total energ
in the undisturbed motion.

But
) et =(a S ()@ )
which easily reduces to
(7.321) T* =T + a,.q4"n"
Also
(7.33) V=T 4 V2"
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Thus the integral of energy is
(734) amnqm;)n + me)m = S}L,

or, in alternative form, by substitution from (7.22) and (7.21),

(7.35) N, q" " + 1 (@,,9"0" + V,u") = Sh.

§7.4. The case of a conservative system with two degrees of freedom.

~ The theory of the vibrations of a conservative system with two degrees of freedom finds
its most obvious application in the study of the motion of a particle on a plane or curved -
surface in Euclidean space of three dimensions. It must not be forgotten, however,
that the theory as here developed is much more general, embracing as it does problems

of rigid dynamics also. It is true that the results of this and the next sections may be
regarded as particular cases of those developed in § 7.6, but the relative simplicity and
importance of the cases of two and three degrees of freedom seem to warrant independent
treatments.

Let 2" be the unit vector tangent to the undisturbed trajectory and let v" be the unit
vector of the principal normal, i.e., the unit vector drawn normal to the curve out from
the concave side. HKquations (2.711) are applicable, but will be written in the more
convenient form

(7.41) — v, V= —o¥,  o—u

where v is the velocity. The quantity o may be called the angular velocity of the
undisturbed motion. We at once derive

(7.411) = — o fov, V= — ol —ar.
The force system being conservative, we have
(742) Qr = Vr) Qrs - Vr.: = Vcr = er'

If we equate the normal acceleration to the normal force component and the tangential
acceleration to the tangential force component, we obtain

(7.421) Vo =k = —V V", v = —V, A",

and hence, by differentiation of the first of these equations with respect to the time
and substitution from the second, we easily find

(7.422) 20 + v = — vV, VA",
Now let us write

(7.43) 7 = ad” 4 Bv’,
M 2
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so that « and B are the components of the disturbance vector in the directions of the
tangent and the normal of the trajectory respectively. On differentiation we obtain

(7.431) W= adt o B v,
' "= A (e — wB) - v (B F wu),
and
(7.432) = (a— o' —20f —aB) -+ v (§ — '8 + 206 + o).
Thus
(7.433) a4, v = — '8 + 20z + oo

For the solution of the problem of vibrations we shall employ the equation (7.15) for the
components of the disturbance vector and the integral of energy (7.34). From the
former we have

7‘4:4) a,‘s,’;)rvs = Grmmvrqmnsqn - VrsVTY)s'

If we substitute from (7.43) and remember the skew-symmetric property of the curvature
tensor, the first term on the right-hand side becomes

(7.441) A — BV "V

Thus, if K denotes the Gaussian curvature of the manifold of configurations, we may
write (7.44) in the form

(7.442) 4,07V = — BPK — oV v — BV, v,
Then, comparing this equation with (7.433), we have the equation of motion
(7.443) f— 0+ 20 4 oo = — LK — oV, v"\" — BV, v,
or, by (7.422),
(7.444) vf + 0B (K + V""" —0?) + 20 (va — va) = 0.
The equation of energy (7.34) becomes, after use of (7.431),
(7.45) v (e — wp) -+ aV, 2" 4 BV, v" = 3k,
or, by (7.421),
(7.451) ve — bo = el + Sh.

In equations (7.444) and (7.451) everything (except « and § and their derivatives)
may be considered as given functions of the time ¢ when the undisturbed trajectory is
given. These two equations contain the solution to the problem. If we eliminate
(va — va), we obtain an equation for g only

(17.452) op -+ 0B (VK -+ V™" 4 30?) 4 203k = 0,
or
(7.453) BB (K + V™" 3v%?) -+ 2k8h = 0.
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The value of « is given in terms of g by (7.451) and we find
(7.454) o = 20| xBall I vszzj‘ & g,
oV

, 0
where A is an infinitesimal constant equal to the initial value of a/v. Since, by (7.43),

(7.46) 7 = o? 4 B2,
it follows that for stability in the kinematical sense it is necessary and sufficient that both
« and 8 should remain permanently small. We may state the result :

TrrorEM XXVII (K).—In order that the motion of a holonomic conservative system with
two degrees of freedom may be stable in the kinematical sense, it is necessary and sufficient
that the value of B as solution of the differential equation (7.453) and the value of « as given
by (7.454) should be permanently small, for all arbitrary infinitesimal values of the constants
3h and A.

It should be noted that, in the case where 8 (as the solution of (7.453)) turns out to be
permanently small, but where « (as given by (7.454)) does not remain permanently small,
we cannot deduce that 8 (as defined by (7.43)) remains permanently small, since equation
(7.453) has been obtained on the assumption that « as well as g is small. WHITTAKERT
discusses the stability of the orbit of a particle in a plane. His argument appears open to
criticism on the above grounds. The coefficient of p in (7.453) can be identified imme-
diately with the coefficient of stability, K being zero in the case of motion in a plane.
It will be seen in § 8.3 that a positive coeflicient of stability ensures stability in the
kinematico-statical sense for disturbances that do not change the total energy,f but it
does not ensure stability in the kinematical sense, as the argument of Whittaker seems to
imply.

We shall call the quantity

(7.461) K + V,v™* -+ 30
the (generalised) coefficient of stability.

If the total energy is not changed by the disturbance, 3A is zero and STURM’S theorem$
is applicable. We may state the following result :

TaeorEM XXVIII (K).—If all along a natural trajectory of a holonomic conservative
system with two degrees of freedom the coefficient of stability is positive, then the motion
15 stable in the kinematical sense for all disturbances which do not change the total energy,
provided that the value of « given by

(7.462) o =20 jt kB dt + Av

remains permanently small for all arbitrary infinitesimal values of the constant A.

t Loc. cit., 395.

1 This result for a particle orbit in a plane follows directly from equation (12) of TromsoN and Tarr,
Natural Philosophy, 1 (1879), 428. Their argument is free from the objectionable feature to which we have
alluded.

§ Cf. DarBoux, Théorie générale des surfaces, Pt. 3 (1894), 102.
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When the motion is steady, the coeflicient of stability, the curvature (x) and the
velocity (v) are all constant along the trajectory (¢f. § 6.6). Thus, if we write ¢ for the
coefficient of stability, assuming it to be positive, we have as the solution of (7.453)

(7.47) = B cos ¢t + C sin ¢f — Q'chh.
Hence _
(7.471) o = g%'f (B sin ¢t — C cos ¢t) + %’ (¢* — 40%*) - constant.

Thus, taking the general case where 8/ is not zero, there is stability or instability accord-
ing as (¢ — 40%«?®) is zero or not zero ; we may state the result :

TarorEM XXIX (K).—1In order that a steady motion of & holonomic conservative system
with two degrees of freedom muay be stable in the kinematical sense, it vs necessary and
sufficeent that

(7.472) VK - V™" — v == 0.
The periodic tvme of a stable vibration is = [vk.

As a simple application of this theorem, consider the motion of a particle in a plane
under a central force whose magnitude depends only on the distance from the centre.
For any radius r there exists a circular motion, which will, of course, be steady. The
preceding theorem gives as condition for stability

v _ v
(7.473) =
and the equilibrium equation is

av
(7.474) ==

If all these circular orbits are stable, we may eliminate v and solve the resulting equation,
obtaining
(7.475) Ve=lr* + I,

where & and %’ are constants. Thus the only law of central force depending on the
distance for which all circular motions are stable in the kinematical sense is that
of the direct distance. ’

§ 7.5. The case of a conservative system with three degrees of freedom.

As important types of motion to which the following theory is applicable we may
mention the motion of a particle in three-dimensional Euclidean space and the motion
of a rigid body about its centre of gravity or about a fixed point.

Let A" be the unit vector tangent to the undisturbed trajectory and v" and " unit
vectors co-directional with the first and second normals respectively. The first and
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second curvatures being denoted by « and o respectively, formulee (2.712) are applicable,
but we shall write them in the more convenient form

ir — O)Vr,
( w = VK,
(7.51) 2= Qo — o),
Q = vo,
t 51‘ — — Q"

The quantities » and Q may be called respectively the first and second angular velocities
of the undisturbed motion. We at once derive

"= — !N F v+ 0Qp,

>n

<n

P o — (07 4 Q3) v - Qg

»f
(7.511) 1’
(3 = 0Qr — Qv — Q3.
By resolution of the force vector along the normals and tangent we have

(7.52) 0=—T,o" vo=—Vo" o=—V"

m

and by differentiation of the second of these equations with respect to the time we

obtain without difficulty ‘
(7.521) 200 -+ v = —oV,, v\,

mn

the same result asin § 7.4. Also, by differentiation of the first of (7.52) we find

(7.522) VoA = — Q.
Now let us put
(7.53) 7= ah 4 By +ye',

so that o, ¢ and y are the components of the disturbance in the directions of the tangent,
first normal and second normal respectively. We at once obtain

(7.531) W= v ek k- B 1E,

(7.582) &= an 4 §v + fpr -+ 287 + 259 F 2¢p + o - Y v
Hence :

(7.533) @, v = B — B (0f 4 Q%) — 29Q — vQ + 2w - ao,
and
(7.534) 4, 770" = ¥ —1Q? - 28Q -+ BQ - 20Q.

Now from the equation (7.15) for the components of the disturbance vector we have

(7‘54) a”%rvs - Grmsnvrqm (a}‘s + BVS + Yps) qn - VNVT (“)\s + Bvs "{_ YPS):
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or, with the notation of § 6.6,
(7.541) amff:]’vs == — '0261{(1’ 1) /U?"(Ku, 2) " O’.VTSV?)\S - B.l’/m\‘r\ls — YV”V"\OS,

and similarly

Py

(7.542) ars'i]rps = - 'U?‘GK(Lz) — UQYK(Z, 2) T fZVrqu‘)\s - ﬁvrsp"vs — 'YVNQTPS.

Comparing these equations with (7.533) and (7.534) and using (7.521) and (7.522), we
obtain the equations

(7.543) 7)8 0B [V K1)+ Vvt — (0 -+ QF)]

- QUYQ A-JL UY [,UzK(l, 2) + anvmpn - Q] -+‘ 2(") (UOC - fo) — U,
and

(7544:) Y -] Y [sz(Z, 2) + anpmpn - Q2] + QBQ + B [.’02[((1, 2) + anvmpn _{_ Q] = V.

These two equations and the integral of energy (7.34) contain the problem of stability.
The integral of energy becomes, on substitution from (7.53) and (7.531),

(7.55) Ve — b2 = B e -+ h,

exactly the same result as in §7.4. If we eliminate (va — va) between (7.543) and
(7.55), we obtain

(7'551) p + B [/02K(1, 1) _I— anvﬂlvn + 3(")2 - Q2] R
- 2‘\.{Q + Y [UZK(1,2) + an\)mpn —_ Q] “l— 2K8k == O.

This equation and (7.544) now contain the problem, « being given by (7.55) and therefore
expressible as in (7.454). Now from (7.53) '

(7.56) =l B

and thus for stability it is necessary and sufficient that «, ¢ and v should all remain
permanently small. We may therefore state the result :

TurorEM XXX (K).—In order that the motion of a holonomic conservative system with
three degress of freedom may be stable in the kinematical sense, it is necessary and sufficient
that the values of B and v as solutions of the differential equations (7.544) and (7.551) and
the value of « as given by (7.454) should all be permanently small, for arbitrary infinitesimal
values of the constants Sh and A.

Let us consider the case of steady motion. All the co-efficients in (7.544) and (7.551)
are then constants and Q is zero. These equations may be written

rB -+ P8 *“]92*{ + pax + 2«3k = 0,

7.57 .
( ) ' i"{ -+ Py -+ Pap + psB =0,
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where p,, p,, p, and p, are constants defined by
P = 0Ky + V™" + 30?—Q7%
{Pz =20,
s ="Ky, o -+ Vad"e",
P =K o)+ V,,0"" — Q2

(7.571)

If we substitute

(7.572) p J— Bent _I_ B17 v = Cent __IN O”
we have for » the equation :

l w A+ p, —np,+p | =0,

(7.573) |
l' np, + Ps» n® -+ A
or
(7.574) nt +0¥(py + p, + pf) + (2 —ps) =0.

~ Thus for stable values of 8 and vy as solutions of (7.57) it is necessary and sufficient that
yo! -+ P + ]022> 0, ‘
(py + po +p.7) > 4pps — ) > 0,

these being the conditions that the values of %® should be real, negative and distinct.

For B, we have the equations
fplBl "{" p301 "‘{“‘ 2K8h ——"‘:0,

(7.575)

7.576 A
( ) 1}%Bl ’i“ ]0401 = Oa
so that
(7.577) v B, = — _21'1“_8_@_2.
DiPs— Ps

Now, assuming that (7.575) are satisfied, we easily see that the value of « given by
(7.454) is permanently small for a non-zero value of 84 if and only if

(7.578) PPy — Ps° = 40°p,.
We may state our result :

TarorEM XXXI (K).—In order that a steady motion of a holonomic conservative system
with three degrees of freedom may be stable in the kinematical sense, it is mecessary and

sufficient that
P+ Pt PP >0,

(P14 pu 4 PP > Hpyp — p5°) > 0,
Py Py — Pt = 40Py
where Py, Pay Ps and p, are defined by (7.571).7
This result may be épplied directly to the case of a particle in three dimensional
Euclidean space having a steady motion in a circle. Here K 1), K, 1), K, 5 and Q are all

+ For brevity we have considered the general case where p, and p; are not both zero. If p, = p; =0,
necessary and sufficient conditions are p; > 0, py > 0, py = 4%
VOL. CCXXVI.—A. N
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zero and the necessary and sufficient conditions for stability in the kinematical sense
may be written

V™" - 'anpmpn + 30? > 0,
(758) 4 (‘anvmvn -+ anPmP” -+ 3(‘)2>2> 4[( anvmvn -+ 3(02)V?n"pmpn "“ (anvmpn)ﬂ:] > 0,

1

m,,n st m.n\2 ___ 27 man
L anv V. V:tp P (an\' P ) =0 I/mmo’p .

If we use cylindrical co-ordinates (r, z, ¢), r being the distance from a line through
the centre of the circle perpendicular to its plane and z the distance from its plane, these
conditions become

V,,+V,,+30">0,

j (Ve + Ve 307 > 4[(V,, 4309V, — V.51 >0,
e

where © is the angular velocity of the particle in its circular motion and subscripts
denote partial derivatives.t This simple example is easy to discuss directly and the
conditions in the above form are immediately verified. We shall have more to say of
this example in § 8.4.

(7.581)

§ 7.6. The general method of resolution along the normals.

We shall now proceed to the general case of N degrees of freedom, without assuming
for the present that the system is necessarily conservative. The method is essentially
a generalisation of the method of moving axes, based on the Frenet-Serret formulee of
§ 2.7. These formulee may be exhibited in the compact form

(7-61) ﬂM) = KM +1) 7\{M +1) T K(J]))‘{M —1)s
where M is zero or any positive integer and where «», vanishes identically unless Pis one
of the numbers 1, 2, ..., N — 1. We can also write these equations in the form

(7.611) . Ron = @ are Mo T ©anar-n (M=0,1, ..),

where , vanishes identically unless P is one of the numbers 1,2, ..., N — 1. The

quantities gy, ©@), ... O -1) may be called the angular velocities of the undisturbed

motion, each being equal to the corresponding curvature multiplied by the velocity.
Taking the contravariant time-flux of (7.611) and then substituting from the same

equations, we obtain

2 . 2
(7.612) Rtan = 011 nOar 4 M+ o0 2y — Lo n)* 4 (o)1 2
- C5(114)7\(111 —1) -+ Oy O~ 1)7\2111 —2) (M =0,1, .. )

Now let us write the disturbance vector in the form
(7.62) ‘ 7" = oAy + a@riy t - e - nrar -1
so that ag,euy ..., ®w-1 are the components of the disturbance vector in the

+ We have assumed that V,, is not zero.
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directions of the tangent, first normal, second normal, etc., respectively. From these
equations we obtain

N-1
(7.621) N == 112:0 (aqany MNary =+ %an Many)s
and
: ) N-1 . .
(7.622) N = uzlo (ary Many 1= 2ecary Rany -+ %ary Aary)-
Thus
R N-1 N1 ) )
(7.63) ) Npy = MZ , %an Uy Mary My -+ 2 WZ , a0 Grshany My
= M =
N1

+ X g G Ay Mpys
M=o

Hence, using the fact that

(7.631) M A flifP:M’
. Qs rl' ) = . .
PROTE T 00 P s M,
we have the kinematical equations
(7.632) ANy == by + 2 [op 1) Oy — Kpar) O]

-+ Ap—2) Op—1) Op) -+ OC(1)—1)0'>(P)
! [(o@+y) - (C‘)(P))g] - °"<1»+1)C;>(1J+1) + Uiy Oprz) Oy,

(P=0,1, .., N—1).
Now from (7.15) we have the dynamical equations

(7.64) %-85187\&) = ’UZGrmsnx{P) © N Moy + Qs A1,
(P=0,1, .., N—1),
or, with the notation of § 6.6,
R N-1 N—1
(7-641) ars*lsx(rP) =—0* X %(ar) K(P, M) + X U-(M)W(P, M)s
M=0 M=0
(P=0,1,..,N—1).
But by (3.123)
(7.65) QT = ’U)\ZO) + 'U(O(l) 7\2‘1),
and therefore o
rerfo) =,
(7.651) < @2 =vog,
\QT)\(P): 0. (P = 2, 3, ceey N -_ ].).

If we differentiate these equations with respect to ¢ and use (7.611), we obtain

- . .
?)W(O’ 0) = v —9 ((1)(1))2,

W0 = 2004 + vog,
(7.652) 1,0 ) @
Weo = O ) W(g)

L W(P,o) - 0, (P = 3, 4, oy N —_ 1).
N 2
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When we substitute from these equations in (7.641) and remember that K, p and
K. oy both vanish, we find

. -1 .
1371 Moy = 'L [’U - (wm) 1+ Z “(M)W(o, M)
ot = T K O [200, vi] 5 )
Gi'Ny = — 0* T eanKo, uy + =2 [2004, +von] 4+ Z awn Wy,
M=1 v M=1
(7.653) < 2N -1 N1
T Ny = — 0 % wanKe,an + 2men©e + E “(M)Wa )
@0’ Npy = — 0 ) oK wp, ) + b wonW @, i,
M=1 M=1
(P=3,4, ..., N — 1).

If we compare these equations with (7.632), we obtain the equations for the components
of the disturbance vector along the normals in the following form :

N—
. . . v
(7.654) ) — 2oy 0 — %@0a) T Ky ©a Qe = ‘(‘)‘ + 2 °‘(M)W<o ays

(7.655)  ay + 2ep0q — 2m0e — %oy [(0@) + (%))2] — ”~<‘>>‘1><2> + oty ) 0(5)
.N 1 ‘A‘V

— 1[2 17 ) K(1 M) 2 —_ 7(0)C0(1) + 2 o‘v(M)I/V(l M)s
1

(7.656) g + 20005 — 25‘(3)“’(2) + amog — % [(0e) + (0g) ) — tyog + L@ Ow
N—-1

= — /[) 2 OC(M)K 2, M) + Z O’(W)PV@ M)

(7657) C;.(p) —|— 2&(1) —-1)WO(p) aOC(p,*_ 1)(1)(}) +1) T Yp —2)O(p —-1)0p)

-+ Ap — 1)<;>(P) - “(P)[( Cl>(1>))3 -+ (CO(P + 1))2] —%p +l)(;)(P +1) -+ AP +2)0@ + 1)OEP +2)
-1 N—1

= U‘* E O’(M)K(P T+ % O((W)W(P M)
(P=3,4,...., N —1).

The importance of these equations lies in the fact that in the case of steady motion
all the coefficients are constant.t
Since

(7.658) 7= (“(o))z’f‘ (0‘(1))2“|“ oo (‘f’-(zv—1))2,
we may state the following result :

TuroreEM XXXII (K).—1In order that the motion of a holonomic system may be stable
in the kinematical sense, it is necessary and sufficient that the values of o), %y, s o -1
as solutions of the differential equations (7.654) to (7.657) should be permanently small.
In the case of steady motion the coefficients in these equations are constants.

+ This is what Rours demanded of a steady motion ; ¢f. Stability of Motion, 2.
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We have not so far assumed the force systém to be conservative. This we shall now
assume, but shall not restrict ourselves to steady motions. For a conservative system
equation (7.654) may be replaced by the integral of energy (7.34), which is easily seen to

“reduce to

(7.66) Vo) — g = 20ag o) + Sk,
which gives

t : t
(7.661) %) = 2"{‘ oKt + "’Skj %i + Ao,

where 4 is an infinitesimal constant equal to the initial value of a)/v. By means of (7.66)
we can simplify (7.655) to the form ’

(7.662)  apy — 2apow + xo [Blow) — (0p)’] — agoe + tgoeoe + 2k03h
N -1 N-—-1
= — ?)2ME= . xanK g, n+ MZ= ) canWa, 1.
Thus we may state the result :
TaeorEM XXXIII (K).—In order that the motion of a holonomic conservative system
may be stable in the kinematical sense, it is necessary and, sufficient that the values of «y), %y
e Oy — 1) @S Solutions of the differential equations (7.662), (7.656) and (7.657) and the

value of w, as given by (7.661) should be permanently small, for all arbitrary infinitesimal
values of the constants Sh and A. :

If the curve of the undisturbed motion is a geodesic of the manifold of configurations
(which is the case when the forces are zero), «,, vanishes. Then the motion is unstable
if, for some pair of values of 3k and 4, the value of o given by

’ ¢
(7.67) g = vahL Zlf-+ Av

isnot bounded. If v does not vanish for any finite value of ¢, it is not difficult to show that
the first part of this expression is not bounded.t For suppose that it is bounded, so that

(7.671) vf @y,

0 ¥?

v being without loss of generality supposed to be positive. If we write

_ [T
(7.672) FQ@) = L et
we have '
(7.673) F () = %

T The following method is due to Prof, C. H. Rowe, F.T.C.D.
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or
(7.674) v=[F" ()],
8o that

- ‘dt 5 P N T
(7.675) v L b r o e = L S t)} .
Thus, by (7.671),

—_— d __1_ -2

(7.676) AAD) > M-,

Hence 1/F(f) must vanish for a finite value of ¢, which is impossible. Therefore (7.671)
is not true. Thus the value of ¢, is not bounded and there is instability. Hence we
have the result :—

TaeorEM XXXIV (K) :—Every natural motion of a holonomic conservative system
which is a natural motion under no forces (or, more generally, which takes place along a
geodesic of the manifold of configurations) is unstable in the kinematical sense, provided
that the velocity does not vanish for any finite value of t.

The motion of a sleeping top is a natural motion under no forces. It is therefore
unstable in the kinematical sense, a fact intuitively obvious when we contemplate an
increase of spin without moving the axis.

Another interesting case is that of steady motion in which all the curvatures except
the first vanish. Considering only a conservative system, we have from (7.661)

t 184 - Awv,

(7.68) % = 20Kq) L“m ==
and from (7.662), (7.656) and (7.657)

N-1 . N-1
(7.681) day -+ o) (0)* + 2kq) Sk + 2 ‘IZ_E ) 2,y — Mzz . oW, my =0,

N—-1 N—1

(7.682) &(P) "‘l‘"‘ 'Dzzu‘é s U-(J[)If(])’ ) —_— 1[2:1— 10('(411)W(P,31) == 0, (P = 2, 3, cosy N -_ 1).

These equations will have solutions of the type
, DN —1)
(7.683) iy == By By @ - . By - O,

where By, ., Py Cw are constants, p, being the roots of the determinantal equation

(7.684)
< 2
PHKq y—Want3(ew)’,  vKay—Wa, v VKo yon—Wa,v-1)
Ko ny~We,n, P+ K W, o, e 0
— )
2 5 42 "
VR 1, 1y— W(N-—l, 1 ) P K(N—I,N—l)"‘W(N——l, N-1)
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while C,, satisfy the equations
[ 0(1) [Q)QK(L 1) W(l, 1) + 3 ((*)(1))2] + 2K(1) 3h "]_ 0(2) [sz(l, 2) T W(x, 2)] + ses
+ O(N—l) [’UzK(l,N—n — W(l, N-—l)] =0,

Coy[* K,y — W, 1)]‘ + Cy[V*K g ) — Wig 9]+ ...
(7.685) ﬁ -+ O(N—].) [7)21{(2,1\/'—1) - IV(Q,N—])] =0,

O(l') [")QKW—L 1)~ PV(N~1,1)] + 0(2) [/UzK(N—l, 9) W(N—l, 2)] B
L -+ O(N—-l) [/UQK(N—I, N~1) W(N——l,N—l)] = 0.

To obtain permanently small values for o, oy, ..., ay_, it is necessary that the
roots of (7.684) should be purely imaginary. If oy, given by (7.68), is to be permanently
small, 1t is evident that we must have

3h
(7.686) 2’0[((1)0(1) + ‘;)" —_ O,
or
. 3h
(7.687) Co =~ g
Thus
(7.688) 300 (0w)* + 2kq 8h = Loy 8h = — Cpy ()%

and thus from (7.685) we derive

2 2 ” —_—
(7.689)| *K 1y — Wy — (o), v*EKon—Wen o VKowy— Wayny |[=0.
2 T
VKo — Wea s V g — Wamy ooy 0K yoy— We yo
'02K(N_1,1) — W(N—l, 1) ooy 'vaK(N—l, N-1) W(N—-].,N—'l)

Since the vanishing of the second curvature implies the vanishing of all curvatures of
higher order, we may state the result :—

TueoreM XXXV (K) :—In order that a steady motion with vanishing second curvature
of @ holonomic conservative system may be stable in the kinematical sense, it is necessary
and sufficient that the roots of the determinantal equation (7.684) should all be purely
vmaginary and that (7.689) should be true.

A particular case of special interest, where the variables are separated, may also be
considered. We shall adopt a semi-geometrical point of view.
In the classical discussion of vibrations about equilibrium, the infinitesimal quadric,

(7.69) Vo dq™ dg* = constant,

plays a fundamental part. In fact, it is necessary and sufficient for stability that this
quadric should be of the closed (or ellipsoidal) type, the independent normal vibrations
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taking place along its principal axes. In the case of vibrations about a state of motion
there is a corresponding quadric of importance to which we shall now proceed.

Being given a trajectory, let 4 be any point on it with co-ordinates ¢" and let B be
any neighbouring point in the manifold of configurations with co-ordinates (¢ 4~ £7).
Consider the locus of the point B (4 being fixed) if

(7.691) V2 st 2" Ny E¥Ngy = Vs E° = comstant.

This is an infinitesimal quadric surface ; we shall call it the stability quadric. The plane
congugate to the direction £}, will have the equation

(7.692) /DZGmnstam)\EﬂO) E:‘zl) )\20) + Pymsama?‘l) — O’
and the directions £f;, and £(;) will be conjugate if
(7~693) ?J?Gmmﬁ?i) 7\(”0) ifz) 7\20) + Vmsg?}) :fz) = 0.

A principal direction of the stability quadric is a direction which is perpendicular to its
conjugate plane (i.e., perpendicular to all the directions which are conjugate to it),
the analytical conditions that £” should define a principal direction being

(7694) vzamnszam 1(%) )\20) + T/msim - Ga/msama
0 being a root of the determinantal equation
(7695) H'UQGW,M)\?O) 7‘20) ’IF Vms _ 0ams“ = O

It is easily seen that any two principal directions are perpendicular to one another.

In the case of a steady motion for which the second curvature vanishes (and to this
case we confine ourselves), we see from (6.621) and (7.652) that the tangential direction
is conjugate to every normal direction. Hence the tangent to the trajectory is a principal
direction. Let us hypothesise that the first mormal is also a principal direction. The
remaining principal directions will lie in the normal plane and will be perpendicular
to the first normal. Now, on account of the vanishing of the second curvature, we
are at liberty to choose A%, Al ..., Aly_y arbitrarily except for the restrictions
laid down in §2.7. At some one point of the trajectory let us choose these vectors
coincident with the remaining principal directions. Then, at that point,

(7696) ’UzK(p, Q) W(p’ Q) — O, (P # Q; P, Q - 0, 1, seey N—— 1),

and, since the motion is steady, these relations will hold true at every point of the
trajectory. These are the conditions that A%, Af, ..., Aw—y should be principal
directions of the stability quadric.

Equations (7.681) and (7.682) reduce to

{éﬁ) + ay[v2K 1,1y — W,y + 8 (0@)?] -+ 2xq 8h = 0,

(7.697) . \ 7
iy + %@ (VK my— W, n]=0. (P=2,3,..,N—1),
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in which the variables are separated. We deduce at once the generalisation of Theorem
XXIX (§7.4):

TureorEM XXXVI (K):—4 steady motion of a holonomic conservative system, for
which the second curvature of the trajectory vanishes and the first normal is a principal
direction of the stability quadric, is stable wn the kinematical sense if and only if

{”2K(1, y + Van XAy — 0° (k))* = 0,
(

(7.698) ) )
VK p py 1 Vi oy My > 0,

P=2,3..,N—-1),
Kpr (P=1, 2, ..., N—-1) being the Riemannian curvatures of the manifold of con-
figurations corresponding to the two-space elements defined by the tangent to the trajectory
and the other principal directions of the stability quadric, Ny, being the unit vector in the
direction of the first normal and Ay, A, ..., Ny—1) being unit vectors n the remaining
principal directions of the stability quadiic.

The periods of the stable vibrations are

(7 [vreqays

7.699 .
( ) iZn/ (VK p, py = Vi Ny Aim )Y, P=23,..,N—1)

CHAPTER VIII.
STABILITY IN THE KINEMATICO-STATICAL SENSE.

§ 8.1. Equations for the components of the disturbance vector.

Stability in the kinematico-statical sense is probably the most interesting from a
physical point of view, because we are chiefly interested in the question as to whether
on account of the disturbance the system passes through configurations widely different
from those through which it would have passed without being disturbed. This type
of stability is correspondingly the most difficult to discuss, and we shall confine ourselves
throughout to conservative systems.

Let " be the infinitesimal vector drawn from the point P of the undisturbed trajectory
C to the corresponding point P* of the disturbed trajectory C¥, the correspondence
between P and P* being fixed by the condition of perpendicularity

(811) ) mnqmy)n P 0.

Let O and O* be fixed corresponding points on C and C* respectively. There are
assoclated with any point P of C' four quantities
s, the length of the arc OP;
s*, the length of the arc O*P* ;
t, the time corresponding to P for the natural motion along C ;
t*, the time corresponding to P* for the natural motion along C*.
VOL. CCXXVL—aA. 0
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Between these quantities we shall now establish relations sufficient to express all in
terms of one when the natural motion along (' is known. The operational symbols
for derivatives, time-fluxes, etc., are used only for the variables s and ¢&. When s* or ¢* is
the independent variable, the expression is written explicitly.

Since PP* is normal to C, we havef}

P

(8.12) §*F — 5 = — § @5k ds,
0

where k" 1s the contravariant vector of first curvature. Hence

*
(8.121) ‘% 1 — g,
But by (3.123), since f* = — a™V,, and by virtue of (8.11), we find
(8.122) Vit = — V, 0",
so that we have
(8.123) LU S
A ds e

Let h denote the total energy for C' and (% -}~ 3h) that for C*, 3k being infinitesimal.
Then

(8.13) T#% 4-V* — T — V = 8h,
so that, if we write,

(8.131) T% =T (1 4+ 27),
we have, since v? = 27T,

(8.132) vir LV, " == 8h.

Squares and higher powers of = may therefore be neglected. "Thus

. dt* . i ]/2(1_:?:‘_‘ (1 . m 2
(8133) "Zl"i' o (\T*> ds - (1 T) (1 + an //U)
_ 1 _!_ 2]’/7;_077; 3 8_];
v v
Now the dynamical equations of C* are
dg | fmonl*dg*" dgt o
(8.14) d*? i L or | det A Y

or, by change of the independent variable to ¢,
/.(E. ’ ke 1 )M %\l‘\* ey *n:l — ﬁ\ ’ dzt* g T — )k

\ A

1 Cf. ““ The First and Second Variations of the Length-Integral in Riemannian Space,” Proc. Lond.
Math. Soc. (2), 25 (1926), 247. The notation is suitably altered.
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from which, by the help of (8.133) and with neglect of second order quantities, we

derive
* . .
s142) g+ [0 g — @BV — s — i (2T o,

But in § 7.1 we occupied ourselves with the analytical problem of estimating the value
of
(8.143) ¢+ {m "}* g — (@)%,

r

eno

where ¢*" = ¢" 4- 7, and found that it was equal to

(8.144) | T+ G g — Q.

Substituting in (8.142) and putting in V instead of @ (with change of sign), we have,
on changing to the covariant form,

(815)  auh + G + Vit + ;%'(2 V™ —3h)V, — amQ“g (gl/"n“v?"""slb> = 0.

This equation may be called the tensorial equation for the components of the disturbance
vector 1n the kinematico-statical sense. ‘

§ 8.2. Equation for the magnitude of the disturbance vector.

If, as in § 7.2, we write p” for the unit vector co-directional with the disturbance vector
", then (7.24) is true. 1f then we multiply (8.15) by p” and sum as indicated, we have

> ~iman T 7S 2 M, S il 2 m 7
(821) 0 — N 0" 4 Vot ™n® 4 Grpntt q"n°q" + e (QVm'Y) — 8h) V,«I-L =0,
the last term having disappeared by virtue of (8.11). This may be written
. - W ~3 m,,n m2 28h
(822) N+ 0 ( Grnst (o) q W (I TR an“‘ -+ [le-’* ] Vm

This is the mvariant equation for the magnstude of the disturbance in the kinematico-statical
sense. '

It is interesting to compare this equation with (7.26) and note that there is an addi-
tional term 4(V,u")?/v® which is positive and therefore contributes to stability. This
was to be expected, since stability in the kinematical sense implies stability in the
kinematico-statical sense, but not conversely. The presence of this term and that on
the right-hand side prevents us from stating a theorem analogous to Theorem XXVI.

§ 8.3. The case of a conservative system with two degrees of freedom.
This case is very simple because the disturbance vector is along the normal to the
curve, so that :
(8.31) uw = ev’, e =+ 1.
o2
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We have then

(8.32) == 9,

from which, by (7.41), we find

(8.33) f=9=0-=0k

Also, equating normal components of force and acceleration, we have
(8.34) Vo™ =eV, v" == — etk == —e0w,

and thus (8.22) becomes

(8.35) N 0 (VK A V™" - 80%%) = - 2ekdh,

where K is the Gaussian curvature of the manifold of configurations.

Now 7 is by definition a positive quantity. Let us put B = @,,.»"v", so that £ =14
when ¢ is positive and B = -- v when ¢ is negative. The question of stability is then a
question of the permanent smallness of § where

(8.36) B+ 8 (0K - Vv - 30%2) - 23h = 0,

3

which is the same as the equation (7.453), the coefficient of £ being the * coeflicient of

stability.” We may state the result :

TurorEM XXXVII (K) :—In order that the motion of a holonomic conservative system
with two degrees of freedom may be stable in the kinematico-statical sense, it s necessary
and sufficient that the solution of the differential equation (8.36) should be permanently
small, for arbitrary values of the infinitesimal constant 8h.

When 8% is zero, we may apply Sturm’s theorem to (8.36) and obtain the result :f

TrroreEM XXXVIIIL (K) i—If oll along o natural trajectory of a holonomuc conservative
system with two degrees of freedom the coefficient of stability is positive, then the motion
is stable in the kinematico-statical sense for all disturbances which do not change the total
enerqy.

In the case of a steady motion, the coefficient of stability and the curvature («) are
constant along the trajectory and we have the result :

TurorEM XXXIX (K):—In order that a steady motion of & holonomic conservative
system with two degrees of freedom may be stable wn the kinematico-statical sense, 1t is
necessary and sufficient that the coefficient of stability should be positive.

t Of. the remarks on the coefficient of stability in § 7.4. For a particle orbit in a plane the coeflicient

of stability may be written 02V /0u?-}-3v%/p?%, where u denotes the distance from the undisturbed curve and
o the radius of curvature.
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§ 8.4. The case of a conservative system with three degrees of freedom.

To develop the theory of this case we may borrow largely from § 7.5. From condition
(8.11) it follows that « in (7.53) is zero and we have as in (7.533) and (7.534)

(8.41) “rs?’)rvs = B — B (0?4 Q%) —2¢Q — YQ:
and
(8.411) et = § — @’ + 260 -0

while from (8.15) we find

(8'42) (61‘8%1‘\'3 = Gnusnv q”l’f(ln - V V Q - M(QVnmm - Sh) Vrvra
and
(8.421) U 0° = — Grsnd” ("0’ — V0™r,

remembering that V,e" is zero. Comparing these four equations, we have

(8.438) B — P (0 Q) —2yQ —vQ

= — 0B,y — 0Ky — BV, — V070" — 4B o — 2 5B,

mn

and _
(8'431) Y. — YQZ Jr 2{39 —§" BQ _ vzﬁK(l, 2) T (02YI{.(2, 2 T Banvan - YanPm‘pn)

so that we obtain for # and v ; precisely equations (7.544) and (7.551), a fact which is
not surprising yet hardly obv1ous, because in § 7.5 we were dealing with a different
correspondence.

Analogues to Theorems XXX and XXXI are immediately available :

TreorEM X1 (K) :—In order that the motion of a holonomic conservative system with
three degrees of freedom may be stable in the kinematico-statical sense, it is necessary and
sufficient that the values of B and v as solutions of the differential equations (7.544) and
(7.551) should be permanently small, for arbitrary values of the infinitesimal constant Sh.

TueoreM XLI (K) :—In order that a steady motion of a holonomic conservative system
with three degrees of freedom may be stable in the kinematico-statical sense, it is necessary
and sufficient that

{:pl -+ Py 1 >0,
(8.44)
(1 P+ P > 4 (Pips — 2°) >0,

where Py, pa, Ps and p, are defined by (7.571).F

T These are the conditions when p, and p; are not both zero. When p, = p; = 0, necessary and
sufficient conditions are p; > 0, p, > 0. )
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Applying this latter theorem to the problem at the end of § 7.5, we see that necessary
and sufficient conditions for stability in the kinematico-statical sense are

{Vﬁ + V.. + 86*>0,
(Ve + V.. 438032 >4[(V,, +30) V,,— V2] >0,

(8.45)

where the subscripts denote partial derivatives.f The conditions may also be written
in the form

(8.451) V.,>0,(V, +80)V.,—V,2>0.

§ 8.5. The general method of resolution along the normals.

The results of the two preceding sections would lead us to suspect that for the dis-
cussion of kinematico-statical stability we would have precisely the same equations for
the components of the disturbance vector along the normals as we had in the discussion
of kinematical stability. This is actually the case, and we shall proceed to demonstrate
it analytically. ' \ ‘

Let us write
(8-51) N = aq 7‘{1) + C4(-2)7\{2) + . Ey — 1)7\2;\? - 1)

so that «g, o4, ..., o -1 are the components of the disturbance vector along the
normals. We note that this is the same equation as (7.62) when «, is put equal to
zero and that (7.632) for P =1, 2, ..., N — 1, and with « put equal to zero, follows
as a kinematical consequence.

Now, turning to our dynamical equations (8.15),we find

N-1 N1
2 9 o 7
(8.52) Uy’ Wpy == — 0 Mzi ) aaunKp, ) + 1[24 . canW @, i)

M=

4 r N‘T ' y i QS}L
___«,»Ué er(P AIA; . C’,u]) V)u.)\(ﬂ‘[) -—l-— _,/l_)z_,

(P=1,2,..,N—1),

Vr )\zp)i

or, making use of (7.651) which are equally true in this case, we have

2 ot ) Yot , , 28h
(8.521) it Ny = — 0" 2 aqplqa + X aanWa, ay —4ag(0a) — = o),
M=1 M =1 v
. N—1 -1 _
(8.622) ) Nipy = — 0 : 2 ) wanB e, X ,, aanW @, my,

(P=2,3,...,N—1)

T We have assumed that V,, is not zero.
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When we compare these equations with (7.632), we obtain precisely (7.662), (7.656)
and (7.657). Thus we have the result :

TarorEM XLII (K) :—In order that the motion of a holonomic conservative system may
be stable in the kinematico-statical sense, it is necessary amd sufficient that the values of
Ly Oy ooe > Ay_y @S Solutions of the differential equations (7.662), (7.656) and (7.657)
should be permanently small for arbitrary values of the infinitesimal constant Sh.

In the case of steady motion the coefficients in these equations are constants.

The stability quadric being defined as in § 7.6, we have the analogues of Theore;ns
XXXV and XXXVI as follows :

TurorEM XLIII (K) :—In order that a steady motion with vanishing second curvature
of  holonomic conservative system may be stable in the kinematico-statical sense, it s
necessary and sufficient that the roots of the determinantal equation (7.684) should all be
purely imaginary.

TurorEM XLIV (K) :—A4 steady motion of a holonomic conservative system, for which
the second curvature of the trajectory vanishes and the first normal vs a principal dirvection
of the stability quadric, 1s stable in the kinematico-statical sense if and only if

VK, 1+ VA + 307 (k) > 0,
VK p, p) + V,u Ny My > 0, (P=23,..., N—1),

(8.53)

Kpp(P=1,2,..., N —1) being the Riemannian curvatures of the manifold of con-
figurations corresponding to the two-space elements defined by the tangent to the trajectory
and the other principal directions of the stability quadric, 2y, being the umit vector n the
direction of the first normal and N, Ny, ..., Ny—1) being unit vectors in the directions
of the remawning principal directions of the stability quadric.

The periods of the stable vibrations are

21 [(*K 1, 1) + Vo N)A G + 30% (k0))?)"2,
(8.531)

2:7!/(’02[((1)' p) + an ?;3))\?13))1/27 (P =2,3,.., N - 1)'

CHAPTER IX.
STABILITY IN THE ACTION SENSE.
§ 9.1. Lquations for the components of the disturbance vector.

When we come to consider stability in the action sense, we find equations very similar
in form to those obtained in the last two chapters, but considerably simpler. It is
important to remember that the metric here is the action line-element, and therefore
the curvature tensor, covariant derivatives, etc., are not the same as in the iast two
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chapters, where the kinematical line-element was employed. Most of the theory of
the present chapter is really of a purely geometrical character, although presented in
dynamical form for the purposes of this paper.

Let 7" be the infinitesimal vector drawn from a point P of the undisturbed curve C
to the corresponding point P* of the disturbed curve C*. Then, if O and O* are fixed
corresponding points on the two curves, and if we write OP = s and O* P* = s*, the law
of correspondence is s = ¢*. Thus the equations of O* (as geodesic) may be written

: LY e
(9.11) q*‘ —l—-{ 7 } q* q* e O,

where ¢* = ¢ -+ +" and the accent denotes a derivative with respect to s. When
we expand this expression and use the geodesic equations of C, we obtain without
~difficulty, just as in § 7.1,

(0.12) W+ Gran'g" g =0,
or, in covariant form,
(913) o gfsﬁs + Grmmqm"’)sqnl == OJ

where g, is the fundamental tensor for the action line-element and ¢, is the curvature
tensor. T'his is the tensorial equation for the components of the disturbance vector in the
action sense.

§ 9.2. Equation for the magnitude of the disturbance vector.

If, as in § 7.2, we write p” for the unit vector co-directional with the disturbance vector
0", we see that, by using differentiation with respect to s instead of with respect to ¢,
we may obtain the analogue of (7.24) in the form
(9'21) grtﬁrut = Y)” - ngrt@?lp—'t'

Then, multiplying (9.13) by p* and summing as indicated, we obtain

(9'22) ) 7]“ - “ﬂ.f/n@'@t w[ Gmxanf'n/ﬂs(]"f == 0,
which may be written
(9.23) 0" 1 (G g 0g" — ) = 0.

This is the tnvariant equation for the magnitude of the disturbance in the action sense.

We can without loss of generality choose the initial points O and O* such that O0*
is perpendicular to C. Then, by the well-known property of geodesics, PP* is always
perpendicular to C, or, otherwise expressed, " is perpendicular to 4. This we shall in
future assume to be the case, so that

(9.24) - Gt = 0.

Then G."g p'q" is the Riemannian curvature of the manifold of configurations
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corresponding to the two-space element defined by p” and the direction of €. The
following theorem results directly from (9.23) :

TreEorEM XLV (A) i—If the Riemannian curvature of the manifold of configurations
corresponding to every two-space element contatning the direction of the curve of undisturbed
motion 1s negative or zero at all pownts of the curve, then the motion is unstable in the action
sense.

§ 9.3. The case of two degrees of freedom.

Since the disturbance vector lies along the normal to the curve, we may put

(9.31) woe=ev, e=+1.
We have then
(9.311) wo=ceV’, o= V.

But, since the curve is a geodesic, v* is zero by (2.711) and therefore p. is zero. Thus
(9.23) may be written

(9.32) 7"+ Kn =0,

where K is the Gaussian curvature of the manifold of configurations. Now 7 is by
definition a positive quantity. Let us put 8 =g¢,,n"v", so that 8 =u when ¢ is

positive and 8 = — v when ¢ is negative. The question of stability is therefore a
question of the permanent smallness of 8, where
(9.33) g+ KB =0.

Thus we have the result :

TurorEM XLVI (A) :—The motion of & holonomic conservative system with two degrees
of freedom s stable n the action sense if the Gaussian curvature of the manifold of con-
Jigurations vs positive throughout the motion and unsiable if it is negative or zero throughout
the motion.

Let us apply this theorem to the motion of a particle of unit mass on a plane, so that
(9.34) ds? = (h—V) (da® + dy?),

where h is the total energy, V the potential energy and (x, y) rectangular Cartesian
co-ordinates. We find by calculation
1

(9.341) K = STy [((h—=V)(V, .+ V,)+Vid V]

+ This form of equation in connection with surface geodesics is, of course, well known. Cf. THOMSON
and Tair, Natural Philosophy, 1 (1879), 423.
VOL. CCXXVI.—A. P
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where the subscripts denote partial derivatives. Thus, since (b — V) is positive at
all points of the undisturbed curve, we may state the result :

TanoreEM XLVIL :—The motion of a particle of unit mass in & plane isstable in the
action sense if the quantity

18 positive along the orbit and unstable if it s negative or zero along the orbit.

We note, in particular, that in the case of the logarithmic potential, for which
(V.. +V,,) is zero, every motion is stable.

In the case of a particle of unit mass moving under the influence of a force directed
towards a fixed point and varying inversely as the Pth power of the distance (where
P is greater than unity), we find from (9.341)

_ k(D)
(934:2) K = 9 (h o V)S”‘I)+13

where the attractive forceis k/r” and V vanishes at infinity. Thus we have the result :

TueoreM XLVIIL :—The motion of a particle in a plane under the influence of an
atiraction to o fized point varying inversely as the Pth power of the (Euclidean) distance
(P being greater than unity) is stable or unstable in the action sense according as the total
energy 1s megative or positive, the potential energy being estimated in such a way as to vanish
at mfinity. '

Referring to equation (9.33), in the case of a steady motion K is constant along the
undisturbed curve. Thus, if K is positive, the solution for the magnitude of the dis-
turbance vector (counted positive when the disturbance lies to one side of the undisturbed
curve and negative when it lies to the other side) is

(9.35) p = A cos (sK*) + B sin (sK?).
The periodic (action) distance is therefore

(9.351) . s = omK™,

and hence, by (4.12), the periodic time is

(9.352) = Uf—-_——V—)—K‘E'

§ 9.4. The case of three degrees of freedom.

Tet 3" be the unit vector tangent to the undisturbed curve ¢ and let v~ and " be
two mutually perpendicular unit vectors perpendicular to 2" and propagated parallelly
along C. Let us write
(9.41) 7= v+ e’
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so that g and y are the components of the disturbance vector along the directions of
v" and ¢" respectively, the component along the tangent being zero. Then, using the
conditions of parallel propagation, we derive

(9.411) =g+,

and hence

(.412) gtV =0",  guet=%".
But from (9.13) we find

(9.42) It = — GV’ " °G"

= — P15 —vHKq,2,
with the notation of § 6.7. Similarly ’
(9.421) gu'e" = — BL, 0 — YK 0.
By comparison with (9.412) we have the equations
(B -+ @K(L y + YK(1,2) =0,

(9.43) .,

) Y+ YK@,z) -+ BK(1,2) =0,
and, since
(9.44) 7P = pF 4 v?,

we may state the result :

TurorEM XLIX (A) :—In order that the motion of a holonomic conservative system
with three degrees of freedom may be stable in the action sense, it is mecessary and
sufficient that the values of B and v as solutions of the differential equations (9.43) should
be permanently small. '

In the case of steady motion the quantities K ), Ky, 5 and K, 5 are constant
along the curve C, and we arrive at the following result directly from (9.43) :

TurorEM L (A) :—In order that a steady motion of a holonomic conservative system with
three degrees of freedom may be stable in the action sense, it is necessary and sujficient that
the following conditions should be satisfied : :

( K(1,1) -+ K(z,z) >0,

(9.45) - 12
K(1, 1)5(2, 2) > [K(1, 2)] .

§ 9.5. The general method of resolution along normals.
Let 2{) be the unit vector tangent to the undisturbed curve C and let 2y, Af,,
.os My-1) be a system of mutually perpendicular unit vectors, perpendicular to al,
and propagated parallelly along C. 'We may write the disturbance vector in the form

(9.51) 7" = ok a(zﬁl(rz) F oo A o My
By the method employed in § 9.4 we arrive at the equations

N—-1

(9.52) CI.HP —I—‘J‘IZ_IOC(M)KUD’I”) pramad 0, (P == 1, 2, sees N— 1).
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Since
(9.53) n? = (xq)? + (%) 4+ oo -+ (2 w-1))%

we may state the result :

TurorEM LI (A) :—In order that the motion of @ holonomic conservative system may
be stable in the action sense, it 1s necessary and sufficient that the values of ayy, o, v
ay—1y as solutions of the differential equations (9.52) should be permanently small.

It the case of steady motion the coefficients in these equations are constants.

For consideration of stability in the action sense we may define the stability quadric
by the equationf

(9.54) Gl ounsi &7 Mo Ny == constant.
The condition that the directions A and 1, should be conjugate is
(9.541) Kp, gy = G My My Mgy Mgy = 0.

In the case of steady motion (to which we shall now confine ourselves) the vectors
Npy (P=1,2, ..., N —1) may be chosen in the principal directions of the stability
quadric, the tangential direction [, being obviously a principal direction. When
the normal vectors have been so chosen, equations (9.52) become

L

(9.55) OCH(P) + (Z(p)K(p’ r) — 0, (P == ]., 2, oo g N — ].),

and we see that there is stability if, and only if, K p, is positive for P =1,2, ..., N — 1.
But the Riemannian curvature of the manifold of configurations corresponding to any
two-space element containing the tangential direction may be written

(9.56) K = G5 NoyE W)

where

(9°57) &= 6(1)7\21) +- 3(2)7}(2) + .t B(N—1)7\ZN—1),
and ’

(9.571) (Bay? + (B + - + (Bav—n) = 1.

Hence, substituting in (9.56), we have
(958) K = (B(l))gK(l, 1) Jf_ (5(2))2I{(2, 2) "']_ see + (aB(N——l))aK(N—l,N—l)'
Thus we may state the result :

TrrorEM LII (A) :—A steady motion of a holonomic conservative system is stable in
the action sense if, and only if, the Riemannian curvature of the manifold of configurations
corresponding to every two-space element containing the tangent to the undisturbed curve
18 positive.

+ Cf. Equation (7.691).
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